Pregled bibliografske jedinice broj: 1251508
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems // Journal of differential equations, 355 (2023), 162-192 doi:10.1016/j.jde.2023.01.030 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1251508 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems
Autori
De Maesschalck, Peter ; Huzak, Renato ; Janssens, Ansfried ; Radunović, Goran
Izvornik
Journal of differential equations (0022-0396) 355
(2023);
162-192
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Contact points ; Entry-exit relation ; Fractal sequences ; Geometric chirps ; Lyapunov quantities ; Minkowski dimension
Sažetak
In this paper we introduce the notion of fractal codimension of a nilpotent contact point p, for λ=λ_0, in smooth planar slow−fast systems X_{; ; ϵ, λ}; ; when the contact order n_{; ; λ_0}; ; (p) of p is even, the singularity order s_{; ; λ_0}; ; (p) of p is odd and p has finite slow divergence, i.e., s_{; ; λ_0}; ; (p)≤2(n_{; ; λ_0}; ; (p)−1). The fractal codimension of p is a generalization of the traditional codimension of a slow-fast Hopf point of Liénard type, introduced in (Dumortier and Roussarie (2009)), and it is intrinsically defined, i.e., it can be directly computed without the need to first bring the system into its normal form. The intrinsic nature of the notion of fractal codimension stems from the Minkowski dimension of fractal sequences of points, defined near p using the so−called entry−exit relation, and slow divergence integral. We apply our method to a slow−fast Hopf point and read its degeneracy (i.e., the first nonzero Lyapunov quantity) as well as the number of limit cycles near such a Hopf point directly from its fractal codimension. We demonstrate our results numerically on some interesting examples by using a simple formula for computation of the fractal codimension. We demonstrate our results numerically on some interesting examples by using a simple formula for computation of the fractal codimension.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Goran Radunović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus