Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1251508

Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems


De Maesschalck, Peter; Huzak, Renato; Janssens, Ansfried; Radunović, Goran
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems // Journal of differential equations, 355 (2023), 162-192 doi:10.1016/j.jde.2023.01.030 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1251508 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems

Autori
De Maesschalck, Peter ; Huzak, Renato ; Janssens, Ansfried ; Radunović, Goran

Izvornik
Journal of differential equations (0022-0396) 355 (2023); 162-192

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Contact points ; Entry-exit relation ; Fractal sequences ; Geometric chirps ; Lyapunov quantities ; Minkowski dimension

Sažetak
In this paper we introduce the notion of fractal codimension of a nilpotent contact point p, for λ=λ_0, in smooth planar slow−fast systems X_{; ; ϵ, λ}; ; when the contact order n_{; ; λ_0}; ; (p) of p is even, the singularity order s_{; ; λ_0}; ; (p) of p is odd and p has finite slow divergence, i.e., s_{; ; λ_0}; ; (p)≤2(n_{; ; λ_0}; ; (p)−1). The fractal codimension of p is a generalization of the traditional codimension of a slow-fast Hopf point of Liénard type, introduced in (Dumortier and Roussarie (2009)), and it is intrinsically defined, i.e., it can be directly computed without the need to first bring the system into its normal form. The intrinsic nature of the notion of fractal codimension stems from the Minkowski dimension of fractal sequences of points, defined near p using the so−called entry−exit relation, and slow divergence integral. We apply our method to a slow−fast Hopf point and read its degeneracy (i.e., the first nonzero Lyapunov quantity) as well as the number of limit cycles near such a Hopf point directly from its fractal codimension. We demonstrate our results numerically on some interesting examples by using a simple formula for computation of the fractal codimension. We demonstrate our results numerically on some interesting examples by using a simple formula for computation of the fractal codimension.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-1020 - Fraktalna analiza diskretnih dinamičkih sustava (DSfracta) (Resman, Maja, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Goran Radunović (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org www.sciencedirect.com

Citiraj ovu publikaciju:

De Maesschalck, Peter; Huzak, Renato; Janssens, Ansfried; Radunović, Goran
Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems // Journal of differential equations, 355 (2023), 162-192 doi:10.1016/j.jde.2023.01.030 (međunarodna recenzija, članak, znanstveni)
De Maesschalck, P., Huzak, R., Janssens, A. & Radunović, G. (2023) Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems. Journal of differential equations, 355, 162-192 doi:10.1016/j.jde.2023.01.030.
@article{article, author = {De Maesschalck, Peter and Huzak, Renato and Janssens, Ansfried and Radunovi\'{c}, Goran}, year = {2023}, pages = {162-192}, DOI = {10.1016/j.jde.2023.01.030}, keywords = {Contact points, Entry-exit relation, Fractal sequences, Geometric chirps, Lyapunov quantities, Minkowski dimension}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2023.01.030}, volume = {355}, issn = {0022-0396}, title = {Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems}, keyword = {Contact points, Entry-exit relation, Fractal sequences, Geometric chirps, Lyapunov quantities, Minkowski dimension} }
@article{article, author = {De Maesschalck, Peter and Huzak, Renato and Janssens, Ansfried and Radunovi\'{c}, Goran}, year = {2023}, pages = {162-192}, DOI = {10.1016/j.jde.2023.01.030}, keywords = {Contact points, Entry-exit relation, Fractal sequences, Geometric chirps, Lyapunov quantities, Minkowski dimension}, journal = {Journal of differential equations}, doi = {10.1016/j.jde.2023.01.030}, volume = {355}, issn = {0022-0396}, title = {Fractal codimension of nilpotent contact points in two-dimensional slow-fast systems}, keyword = {Contact points, Entry-exit relation, Fractal sequences, Geometric chirps, Lyapunov quantities, Minkowski dimension} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font