Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1249455

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic


(PsyCorona) Van Lissa, Caspar J.; Stroebe, Wolfgang; vanDellen, Michelle R.; Leander, N. Pontus; Agostini, Maximilian; Draws, Tim; Grygoryshyn, Andrii; Gützgow, Ben; Kreienkamp, Jannis; Vetter, Clara S. et al.
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic // Patterns, 3 (2022), 4; 100482, 15 doi:10.1016/j.patter.2022.100482 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1249455 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Autori
Van Lissa, Caspar J. ; Stroebe, Wolfgang ; vanDellen, Michelle R. ; Leander, N. Pontus ; Agostini, Maximilian ; Draws, Tim ; Grygoryshyn, Andrii ; Gützgow, Ben ; Kreienkamp, Jannis ; Vetter, Clara S. ; Abakoumkin, Georgios ; Abdul Khaiyom, Jamilah Hanum ; Ahmedi, Vjolica ; Akkas, Handan ; Almenara, Carlos A. ; Atta, Mohsin ; Bagci, Sabahat Cigdem ; Basel, Sima ; Kida, Edona Berisha ; Bernardo, Allan B.I. ; Buttrick, Nicholas R. ; Chobthamkit, Phatthanakit ; Choi, Hoon-Seok ; Cristea, Mioara ; Csaba, Sára ; Damnjanović, Kaja ; Danyliuk, Ivan ; Dash, Arobindu ; Di Santo, Daniela ; Douglas, Karen M. ; Enea, Violeta ; Faller, Daiane Gracieli ; Fitzsimons, Gavan J. ; Gheorghiu, Alexandra ; Gómez, Ángel ; Hamaidia, Ali ; Han, Qing ; Helmy, Mai ; Hudiyana, Joevarian ; Jeronimus, Bertus F. ; Jiang, Ding-Yu ; Jovanović, Veljko ; Kamenov, Željka ; Kende, Anna ; Keng, Shian-Ling ; Thanh Kieu, Tra Thi ; Koc, Yasin ; Kovyazina, Kamila ; Kozytska, Inna ; Krause, Joshua ; Kruglanksi, Arie W. ; Kurapov, Anton ; Kutlaca, Maja ; Lantos, Nóra Anna ; Lemay, Edward P. ; Jaya Lesmana, Cokorda Bagus ; Louis, Winnifred R. ; Lueders, Adrian ; Malik, Najma Iqbal ; Martinez, Anton P. ; McCabe, Kira O. ; Mehulić, Jasmina ; Milla, Mirra Noor ; Mohammed, Idris ; Molinario, Erica ; Moyano, Manuel ; Muhammad, Hayat ; Mula, Silvana ; Muluk, Hamdi ; Myroniuk, Solomiia ; Najafi, Reza ; Nisa, Claudia F. ; Nyúl, Boglárka ; O’Keefe, Paul A. ; Olivas Osuna, Jose Javier ; Osin, Evgeny N. ; Park, Joonha ; Pica, Gennaro ; Pierro, Antonio ; Rees, Jonas H. ; Reitsema, Anne Margit ; Resta, Elena ; Rullo, Marika ; Ryan, Michelle K. ; Samekin, Adil ; Santtila, Pekka ; Sasin, Edyta M. ; Schumpe, Birga M. ; Selim, Heyla A. ; Stanton, Michael Vicente ; Sultana, Samiah ; Sutton, Robbie M. ; Tseliou, Eleftheria ; Utsugi, Akira ; Anne van Breen, Jolien ; Van Veen, Kees ; Vázquez, Alexandra ; Wollast, Robin ; Wai-Lan Yeung, Victoria ; Zand, Somayeh ; Žeželj, Iris Lav ; Zheng, Bang ; Zick, Andreas ; Zúñiga, Claudia ; Bélanger, Jocelyn J.

Kolaboracija
PsyCorona

Izvornik
Patterns (2666-3899) 3 (2022), 4; 100482, 15

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Machine learning ; COVID-19 ; Health Behaviors ; Social Norms ; Public Goods DilemmaJo

Sažetak
Before vaccines for COVID-19 became available, a set of infection prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection prevention behavior in 56, 072 participants across 28 countries, administered in March-May 2020. The machine-learning model predicted 52% of the variance in infection prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically-derived predictors were relatively unimportant.

Izvorni jezik
Engleski

Znanstvena područja
Psihologija



POVEZANOST RADA


Ustanove:
Filozofski fakultet, Zagreb

Profili:

Avatar Url Veljko Jovanović (autor)

Avatar Url Jasmina Mehulić (autor)

Avatar Url Željka Kamenov (autor)

Poveznice na cjeloviti tekst rada:

doi www.cell.com

Citiraj ovu publikaciju:

(PsyCorona) Van Lissa, Caspar J.; Stroebe, Wolfgang; vanDellen, Michelle R.; Leander, N. Pontus; Agostini, Maximilian; Draws, Tim; Grygoryshyn, Andrii; Gützgow, Ben; Kreienkamp, Jannis; Vetter, Clara S. et al.
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic // Patterns, 3 (2022), 4; 100482, 15 doi:10.1016/j.patter.2022.100482 (međunarodna recenzija, članak, znanstveni)
(PsyCorona) (PsyCorona) Van Lissa, C., Stroebe, W., vanDellen, M., Leander, N., Agostini, M., Draws, T., Grygoryshyn, A., Gützgow, B., Kreienkamp, J. & Vetter, C. (2022) Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic. Patterns, 3 (4), 100482, 15 doi:10.1016/j.patter.2022.100482.
@article{article, author = {Van Lissa, Caspar J. and Stroebe, Wolfgang and vanDellen, Michelle R. and Leander, N. Pontus and Agostini, Maximilian and Draws, Tim and Grygoryshyn, Andrii and G\"{u}tzgow, Ben and Kreienkamp, Jannis and Vetter, Clara S. and Abakoumkin, Georgios and Abdul Khaiyom, Jamilah Hanum and Ahmedi, Vjolica and Akkas, Handan and Almenara, Carlos A. and Atta, Mohsin and Bagci, Sabahat Cigdem and Basel, Sima and Kida, Edona Berisha and Bernardo, Allan B.I. and Buttrick, Nicholas R. and Chobthamkit, Phatthanakit and Choi, Hoon-Seok and Cristea, Mioara and Csaba, S\'{a}ra and Damnjanovi\'{c}, Kaja and Danyliuk, Ivan and Dash, Arobindu and Di Santo, Daniela and Douglas, Karen M. and Enea, Violeta and Faller, Daiane Gracieli and Fitzsimons, Gavan J. and Gheorghiu, Alexandra and G\'{o}mez, \'{A}ngel and Hamaidia, Ali and Han, Qing and Helmy, Mai and Hudiyana, Joevarian and Jeronimus, Bertus F. and Jiang, Ding-Yu and Jovanovi\'{c}, Veljko and Kamenov, \v{Z}eljka and Kende, Anna and Keng, Shian-Ling and Thanh Kieu, Tra Thi and Koc, Yasin and Kovyazina, Kamila and Kozytska, Inna and Krause, Joshua and Kruglanksi, Arie W. and Kurapov, Anton and Kutlaca, Maja and Lantos, N\'{o}ra Anna and Lemay, Edward P. and Jaya Lesmana, Cokorda Bagus and Louis, Winnifred R. and Lueders, Adrian and Malik, Najma Iqbal and Martinez, Anton P. and McCabe, Kira O. and Mehuli\'{c}, Jasmina and Milla, Mirra Noor and Mohammed, Idris and Molinario, Erica and Moyano, Manuel and Muhammad, Hayat and Mula, Silvana and Muluk, Hamdi and Myroniuk, Solomiia and Najafi, Reza and Nisa, Claudia F. and Ny\'{u}l, Bogl\'{a}rka and O’Keefe, Paul A. and Olivas Osuna, Jose Javier and Osin, Evgeny N. and Park, Joonha and Pica, Gennaro and Pierro, Antonio and Rees, Jonas H. and Reitsema, Anne Margit and Resta, Elena and Rullo, Marika and Ryan, Michelle K. and Samekin, Adil and Santtila, Pekka and Sasin, Edyta M. and Schumpe, Birga M. and Selim, Heyla A. and Stanton, Michael Vicente and Sultana, Samiah and Sutton, Robbie M. and Tseliou, Eleftheria and Utsugi, Akira and Anne van Breen, Jolien and Van Veen, Kees and V\'{a}zquez, Alexandra and Wollast, Robin and Wai-Lan Yeung, Victoria and Zand, Somayeh and \v{Z}e\v{z}elj, Iris Lav and Zheng, Bang and Zick, Andreas and Z\'{u}\~{n}iga, Claudia and B\'{e}langer, Jocelyn J.}, year = {2022}, pages = {15}, DOI = {10.1016/j.patter.2022.100482}, chapter = {100482}, keywords = {Machine learning, COVID-19, Health Behaviors, Social Norms, Public Goods DilemmaJo}, journal = {Patterns}, doi = {10.1016/j.patter.2022.100482}, volume = {3}, number = {4}, issn = {2666-3899}, title = {Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic}, keyword = {Machine learning, COVID-19, Health Behaviors, Social Norms, Public Goods DilemmaJo}, chapternumber = {100482} }
@article{article, author = {Van Lissa, Caspar J. and Stroebe, Wolfgang and vanDellen, Michelle R. and Leander, N. Pontus and Agostini, Maximilian and Draws, Tim and Grygoryshyn, Andrii and G\"{u}tzgow, Ben and Kreienkamp, Jannis and Vetter, Clara S. and Abakoumkin, Georgios and Abdul Khaiyom, Jamilah Hanum and Ahmedi, Vjolica and Akkas, Handan and Almenara, Carlos A. and Atta, Mohsin and Bagci, Sabahat Cigdem and Basel, Sima and Kida, Edona Berisha and Bernardo, Allan B.I. and Buttrick, Nicholas R. and Chobthamkit, Phatthanakit and Choi, Hoon-Seok and Cristea, Mioara and Csaba, S\'{a}ra and Damnjanovi\'{c}, Kaja and Danyliuk, Ivan and Dash, Arobindu and Di Santo, Daniela and Douglas, Karen M. and Enea, Violeta and Faller, Daiane Gracieli and Fitzsimons, Gavan J. and Gheorghiu, Alexandra and G\'{o}mez, \'{A}ngel and Hamaidia, Ali and Han, Qing and Helmy, Mai and Hudiyana, Joevarian and Jeronimus, Bertus F. and Jiang, Ding-Yu and Jovanovi\'{c}, Veljko and Kamenov, \v{Z}eljka and Kende, Anna and Keng, Shian-Ling and Thanh Kieu, Tra Thi and Koc, Yasin and Kovyazina, Kamila and Kozytska, Inna and Krause, Joshua and Kruglanksi, Arie W. and Kurapov, Anton and Kutlaca, Maja and Lantos, N\'{o}ra Anna and Lemay, Edward P. and Jaya Lesmana, Cokorda Bagus and Louis, Winnifred R. and Lueders, Adrian and Malik, Najma Iqbal and Martinez, Anton P. and McCabe, Kira O. and Mehuli\'{c}, Jasmina and Milla, Mirra Noor and Mohammed, Idris and Molinario, Erica and Moyano, Manuel and Muhammad, Hayat and Mula, Silvana and Muluk, Hamdi and Myroniuk, Solomiia and Najafi, Reza and Nisa, Claudia F. and Ny\'{u}l, Bogl\'{a}rka and O’Keefe, Paul A. and Olivas Osuna, Jose Javier and Osin, Evgeny N. and Park, Joonha and Pica, Gennaro and Pierro, Antonio and Rees, Jonas H. and Reitsema, Anne Margit and Resta, Elena and Rullo, Marika and Ryan, Michelle K. and Samekin, Adil and Santtila, Pekka and Sasin, Edyta M. and Schumpe, Birga M. and Selim, Heyla A. and Stanton, Michael Vicente and Sultana, Samiah and Sutton, Robbie M. and Tseliou, Eleftheria and Utsugi, Akira and Anne van Breen, Jolien and Van Veen, Kees and V\'{a}zquez, Alexandra and Wollast, Robin and Wai-Lan Yeung, Victoria and Zand, Somayeh and \v{Z}e\v{z}elj, Iris Lav and Zheng, Bang and Zick, Andreas and Z\'{u}\~{n}iga, Claudia and B\'{e}langer, Jocelyn J.}, year = {2022}, pages = {15}, DOI = {10.1016/j.patter.2022.100482}, chapter = {100482}, keywords = {Machine learning, COVID-19, Health Behaviors, Social Norms, Public Goods DilemmaJo}, journal = {Patterns}, doi = {10.1016/j.patter.2022.100482}, volume = {3}, number = {4}, issn = {2666-3899}, title = {Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic}, keyword = {Machine learning, COVID-19, Health Behaviors, Social Norms, Public Goods DilemmaJo}, chapternumber = {100482} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font