Pregled bibliografske jedinice broj: 1248889
Applying Explainable Machine Learning Models for Detection of Breast Cancer Lymph Node Metastasis in Patients Eligible for Neoadjuvant Treatment
Applying Explainable Machine Learning Models for Detection of Breast Cancer Lymph Node Metastasis in Patients Eligible for Neoadjuvant Treatment // Cancers, 15 (2023), 3; 15030634, 17 doi:10.3390/cancers15030634 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1248889 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Applying Explainable Machine Learning Models for
Detection of Breast Cancer Lymph Node Metastasis
in Patients Eligible for Neoadjuvant Treatment
Autori
Vrdoljak, Josip ; Boban, Zvonimir ; Barić, Domjan ; Šegvić, Darko ; Kumrić, Marko ; Avirović, Manuela ; Perić Balja, Melita ; Milković Periša, Marija ; Tomasović, Čedna ; Tomić, Snježana ; Vrdoljak, Eduard ; Božić, Joško
Izvornik
Cancers (2072-6694) 15
(2023), 3;
15030634, 17
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning ; breast cancer ; neoadjuvant systemic treatment ; lymph node metastasis
Sažetak
Background: Due to recent changes in breast cancer treatment strategy, significantly more patients are treated with neoadjuvant systemic therapy (NST). Radiological methods do not precisely determine axillary lymph node status, with up to 30% of patients being misdiagnosed. Hence, supplementary methods for lymph node status assessment are needed. This study aimed to apply and evaluate machine learning models on clinicopathological data, with a focus on patients meeting NST criteria, for lymph node metastasis prediction. Methods: From the total breast cancer patient data (n = 8381), 719 patients were identified as eligible for NST. Machine learning models were applied for the NST-criteria group and the total study population. Model explainability was obtained by calculating Shapley values. Results: In the NST-criteria group, random forest achieved the highest performance (AUC: 0.793 [0.713, 0.865]), while in the total study population, XGBoost performed the best (AUC: 0.762 [0.726, 0.795]). Shapley values identified tumor size, Ki-67, and patient age as the most important predictors. Conclusion: Tree-based models achieve a good performance in assessing lymph node status. Such models can lead to more accurate disease stage prediction and consecutively better treatment selection, especially for NST patients where radiological and clinical findings are often the only way of lymph node assessment.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne prirodne znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Medicinski fakultet, Rijeka,
Medicinski fakultet, Zagreb,
Medicinski fakultet, Split
Profili:
Manuela Avirović
(autor)
Eduard Vrdoljak
(autor)
Marko Kumrić
(autor)
Domjan Barić
(autor)
Snježana Tomić
(autor)
Marija Milković Periša
(autor)
Melita Perić Balja
(autor)
Čedna Tomasović-Lončarić
(autor)
Joško Božić
(autor)
Zvonimir Boban
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus