Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1248556

Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks


Vlah, Domagoj; Šepetanc, Karlo; Pandžić, Hrvoje
Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks // IEEE Systems Journal, 17 (2023), 2; 2767-2778 doi:10.1109/jsyst.2022.3232942 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1248556 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks

Autori
Vlah, Domagoj ; Šepetanc, Karlo ; Pandžić, Hrvoje

Izvornik
IEEE Systems Journal (1932-8184) 17 (2023), 2; 2767-2778

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bilevel optimization ; Deep convolutional neural network ; Optimal power flow

Sažetak
Current state-of-the-art solution techniques for solving bilevel optimization problems either assume strong problem regularity criteria or are computationally intractable. In this article, we address power system problems of bilevel structure, commonly arising after the deregulation of the power industry. Such problems are predominantly solved by converting the lower level problem into a set of equivalent constraints using the Karush–Kuhn–Tucker optimality conditions at an expense of binary variables. Furthermore, in case the lower level problem is nonconvex, the strong duality does not hold rendering the single-level reduction techniques inapplicable. To overcome this, we propose an effective numerical scheme based on bypassing the lower level completely using an approximation function that replicates the relevant lower level effect on the upper level. The approximation function is constructed by training a deep convolutional neural network. The numerical procedure is run iteratively to enhance the accuracy. As a case study, the proposed method is applied to a price-maker energy storage optimal bidding problem that considers an ac power flow-based market clearing in the lower level. The results indicate that greater actual profits are achieved as compared to the less accurate dc market representation.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Profili:

Avatar Url Domagoj Vlah (autor)

Avatar Url Karlo Šepetanc (autor)

Avatar Url Hrvoje Pandžić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Vlah, Domagoj; Šepetanc, Karlo; Pandžić, Hrvoje
Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks // IEEE Systems Journal, 17 (2023), 2; 2767-2778 doi:10.1109/jsyst.2022.3232942 (međunarodna recenzija, članak, znanstveni)
Vlah, D., Šepetanc, K. & Pandžić, H. (2023) Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks. IEEE Systems Journal, 17 (2), 2767-2778 doi:10.1109/jsyst.2022.3232942.
@article{article, author = {Vlah, Domagoj and \v{S}epetanc, Karlo and Pand\v{z}i\'{c}, Hrvoje}, year = {2023}, pages = {2767-2778}, DOI = {10.1109/jsyst.2022.3232942}, keywords = {Bilevel optimization, Deep convolutional neural network, Optimal power flow}, journal = {IEEE Systems Journal}, doi = {10.1109/jsyst.2022.3232942}, volume = {17}, number = {2}, issn = {1932-8184}, title = {Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks}, keyword = {Bilevel optimization, Deep convolutional neural network, Optimal power flow} }
@article{article, author = {Vlah, Domagoj and \v{S}epetanc, Karlo and Pand\v{z}i\'{c}, Hrvoje}, year = {2023}, pages = {2767-2778}, DOI = {10.1109/jsyst.2022.3232942}, keywords = {Bilevel optimization, Deep convolutional neural network, Optimal power flow}, journal = {IEEE Systems Journal}, doi = {10.1109/jsyst.2022.3232942}, volume = {17}, number = {2}, issn = {1932-8184}, title = {Solving Bilevel Optimal Bidding Problems Using Deep Convolutional Neural Networks}, keyword = {Bilevel optimization, Deep convolutional neural network, Optimal power flow} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font