Pregled bibliografske jedinice broj: 1248380
Trimeric Architecture Ensures the Stability and Biological Activity of the Calf Purine Nucleoside Phosphorylase: In Silico and In Vitro Studies of Monomeric and Trimeric Forms of the Enzyme
Trimeric Architecture Ensures the Stability and Biological Activity of the Calf Purine Nucleoside Phosphorylase: In Silico and In Vitro Studies of Monomeric and Trimeric Forms of the Enzyme // International journal of molecular sciences, 24 (2023), 3; 2157, 21 doi:10.3390/ijms24032157 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1248380 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Trimeric Architecture Ensures the Stability and
Biological Activity of the Calf Purine Nucleoside
Phosphorylase: In Silico and In Vitro Studies of
Monomeric and Trimeric Forms of the Enzyme
Autori
Dyzma, Alicja ; Wielgus-Kutrowska, Beata ; Girstun, Agnieszka ; Jelić Matošević, Zoe ; Staroń, Krzysztof ; Bertoša, Branimir ; Trylska, Joanna ; Bzowska, Agnieszka
Izvornik
International journal of molecular sciences (1422-0067) 24
(2023), 3;
2157, 21
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
purine nucleoside phosphorylase ; homooligomeric proteins ; obligate (obligatory) oligomer ; subunit–subunit interface ; rearrangement of the active site ; tertiary/quaternary structure ; in silico/ in vivo/in vitro
Sažetak
Mammalian purine nucleoside phosphorylase (PNP) is biologically active as a homotrimer, in which each monomer catalyzes a reaction independently of the others. To answer the question of why the native PNP forms a trimeric structure, we constructed, in silico and in vitro, the monomeric form of the enzyme. Molecular dynamics simulations showed different geometries of the active site in the non-mutated trimeric and monomeric PNP forms, which suggested that the active site in the isolated monomer could be non-functional. To confirm this hypothesis, six amino acids located at the interface of the subunits were selected and mutated to alanines to disrupt the trimer and obtain a monomer (6Ala PNP). The effects of these mutations on the enzyme structure, stability, conformational dynamics, and activity were examined. The solution experiments confirmed that the 6Ala PNP mutant occurs mainly as a monomer, with a secondary structure almost identical to the wild type, WT PNP, and importantly, it shows no enzymatic activity. Simulations confirmed that, although the secondary structure of the 6Ala monomer is similar to the WT PNP, the positions of the amino acids building the 6Ala PNP active site significantly differ. These data suggest that a trimeric structure is necessary to stabilize the geometry of the active site of this enzyme.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Biologija
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE