Pregled bibliografske jedinice broj: 1247233
Retweet Prediction Based on Heterogeneous Data Sources: The Combination of Text and Multilayer Network Features
Retweet Prediction Based on Heterogeneous Data Sources: The Combination of Text and Multilayer Network Features // Applied sciences (Basel), 12 (2022), 21; 11216-11237 doi:10.3390/app122111216 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1247233 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Retweet Prediction Based on Heterogeneous Data
Sources: The Combination of Text and Multilayer
Network Features
Autori
Meštrović, Ana ; Petrović, Milan ; Beliga, Slobodan
Izvornik
Applied sciences (Basel) (2076-3417) 12
(2022), 21;
11216-11237
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
retweet prediction ; multilayer network ; natural language processing ; text features ; multilayer network ; Twitter data
Sažetak
Retweet prediction is an important task in the context of various problems, such as information spreading analysis, automatic fake news detection, social media monitoring, etc. In this study, we explore retweet prediction based on heterogeneous data sources. In order to classify a tweet according to the number of retweets, we combine features extracted from the multilayer network and text. More specifically, we introduce a multilayer framework for the multilayer network representation of Twitter. This formalism captures different users’ actions and complex relationships, as well as other key properties of communication on Twitter. Next, we select a set of local network measures from each layer and construct a set of multilayer network features. We also adopt a BERT-based language model, namely Cro-CoV-cseBERT, to capture the high-level semantics and structure of tweets as a set of text features. We then trained six machine learning (ML) algorithms: random forest, multilayer perceptron, light gradient boosting machine, category-embedding model, neural oblivious decision ensembles, and an attentive interpretable tabular learning model for the retweet-prediction task. We compared the performance of all six algorithms in three different setups: with text features only, with multilayer network features only, and with both feature sets. We evaluated all the setups in terms of standard evaluation measures. For this task, we first prepared an empirical dataset of 199, 431 tweets in Croatian posted between 1 January 2020 and 31 May 2021. Our results indicate that the prediction model performs better by integrating multilayer network features with text features than by using only one set of features.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-38 - Postupci mjerenja semantičke sličnosti tekstova (SemText) (Meštrović, Ana, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Poveznice na cjeloviti tekst rada:
doi www.mdpi.com www.mdpi.comPoveznice na istraživačke podatke:
github.comCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- Social Science Citation Index (SSCI)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Computer and Information Systems Abstracts