Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1246224

Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World


Vannitsem, Stéphane; Bremnes, John Bjørnar; Demaeyer, Jonathan; Evans, Gavin R.; Flowerdew, Jonathan; Hemri, Stephan; Lerch, Sebastian; Roberts, Nigel; Theis, Susanne; Atencia, Aitor et al.
Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World // Bulletin of the American Meteorological Society, 102 (2021), 3; E681-E699 doi:10.1175/bams-d-19-0308.1 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1246224 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World

Autori
Vannitsem, Stéphane ; Bremnes, John Bjørnar ; Demaeyer, Jonathan ; Evans, Gavin R. ; Flowerdew, Jonathan ; Hemri, Stephan ; Lerch, Sebastian ; Roberts, Nigel ; Theis, Susanne ; Atencia, Aitor ; Ben Bouallègue, Zied ; Bhend, Jonas ; Dabernig, Markus ; De Cruz, Lesley ; Hieta, Leila ; Mestre, Olivier ; Moret, Lionel ; Odak Plenković, Iris ; Schmeits, Maurice ; Taillardat, Maxime ; Van den Bergh, Joris ; Van Schaeybroeck, Bert ; Whan, Kirien ; Ylhaisi, Jussi

Izvornik
Bulletin of the American Meteorological Society (0003-0007) 102 (2021), 3; E681-E699

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Bias ; Operational forecasting ; Probability forecasts/models/distribution ; Model output statistics ; Data science ; Regression

Sažetak
Statistical postprocessing techniques are nowadays key components of the forecasting suites in many national meteorological services (NMS), with, for most of them, the objective of correcting the impact of different types of errors on the forecasts. The final aim is to provide optimal, automated, seamless forecasts for end users. Many techniques are now flourishing in the statistical, meteorological, climatological, hydrological, and engineering communities. The methods range in complexity from simple bias corrections to very sophisticated distribution-adjusting techniques that incorporate correlations among the prognostic variables. The paper is an attempt to summarize the main activities going on in this area from theoretical developments to operational applications, with a focus on the current challenges and potential avenues in the field. Among these challenges is the shift in NMS toward running ensemble numerical weather prediction (NWP) systems at the kilometer scale that produce very large datasets and require high-density high- quality observations, the necessity to preserve space–time correlation of high-dimensional corrected fields, the need to reduce the impact of model changes affecting the parameters of the corrections, the necessity for techniques to merge different types of forecasts and ensembles with different behaviors, and finally the ability to transfer research on statistical postprocessing to operations. Potential new avenues are also discussed.

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Iris Odak Plenković (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Vannitsem, Stéphane; Bremnes, John Bjørnar; Demaeyer, Jonathan; Evans, Gavin R.; Flowerdew, Jonathan; Hemri, Stephan; Lerch, Sebastian; Roberts, Nigel; Theis, Susanne; Atencia, Aitor et al.
Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World // Bulletin of the American Meteorological Society, 102 (2021), 3; E681-E699 doi:10.1175/bams-d-19-0308.1 (međunarodna recenzija, članak, znanstveni)
Vannitsem, S., Bremnes, J., Demaeyer, J., Evans, G., Flowerdew, J., Hemri, S., Lerch, S., Roberts, N., Theis, S. & Atencia, A. (2021) Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World. Bulletin of the American Meteorological Society, 102 (3), E681-E699 doi:10.1175/bams-d-19-0308.1.
@article{article, author = {Vannitsem, St\'{e}phane and Bremnes, John Bj\ornar and Demaeyer, Jonathan and Evans, Gavin R. and Flowerdew, Jonathan and Hemri, Stephan and Lerch, Sebastian and Roberts, Nigel and Theis, Susanne and Atencia, Aitor and Ben Bouall\`{e}gue, Zied and Bhend, Jonas and Dabernig, Markus and De Cruz, Lesley and Hieta, Leila and Mestre, Olivier and Moret, Lionel and Odak Plenkovi\'{c}, Iris and Schmeits, Maurice and Taillardat, Maxime and Van den Bergh, Joris and Van Schaeybroeck, Bert and Whan, Kirien and Ylhaisi, Jussi}, year = {2021}, pages = {E681-E699}, DOI = {10.1175/bams-d-19-0308.1}, keywords = {Bias, Operational forecasting, Probability forecasts/models/distribution, Model output statistics, Data science, Regression}, journal = {Bulletin of the American Meteorological Society}, doi = {10.1175/bams-d-19-0308.1}, volume = {102}, number = {3}, issn = {0003-0007}, title = {Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World}, keyword = {Bias, Operational forecasting, Probability forecasts/models/distribution, Model output statistics, Data science, Regression} }
@article{article, author = {Vannitsem, St\'{e}phane and Bremnes, John Bj\ornar and Demaeyer, Jonathan and Evans, Gavin R. and Flowerdew, Jonathan and Hemri, Stephan and Lerch, Sebastian and Roberts, Nigel and Theis, Susanne and Atencia, Aitor and Ben Bouall\`{e}gue, Zied and Bhend, Jonas and Dabernig, Markus and De Cruz, Lesley and Hieta, Leila and Mestre, Olivier and Moret, Lionel and Odak Plenkovi\'{c}, Iris and Schmeits, Maurice and Taillardat, Maxime and Van den Bergh, Joris and Van Schaeybroeck, Bert and Whan, Kirien and Ylhaisi, Jussi}, year = {2021}, pages = {E681-E699}, DOI = {10.1175/bams-d-19-0308.1}, keywords = {Bias, Operational forecasting, Probability forecasts/models/distribution, Model output statistics, Data science, Regression}, journal = {Bulletin of the American Meteorological Society}, doi = {10.1175/bams-d-19-0308.1}, volume = {102}, number = {3}, issn = {0003-0007}, title = {Statistical Postprocessing for Weather Forecasts: Review, Challenges, and Avenues in a Big Data World}, keyword = {Bias, Operational forecasting, Probability forecasts/models/distribution, Model output statistics, Data science, Regression} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font