Pregled bibliografske jedinice broj: 1246171
Scalar extension Hopf algebroids
Scalar extension Hopf algebroids // Journal of algebra and its applications (2023) doi:10.1142/S0219498824501147 (znanstveni, prihvaćen)
CROSBI ID: 1246171 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Scalar extension Hopf algebroids
Autori
Stojić, Martina
Vrsta, podvrsta
Radovi u časopisima,
znanstveni
Izvornik
Journal of algebra and its applications (2023)
Status rada
Prihvaćen
Ključne riječi
Hopf algebroid ; antipode ; Brzezinski-Militaru theorem ; scalar extension ; bialgebroid
Sažetak
Given a Hopf algebra H, Brzezinski and Militaru have shown that each braided commutative Yetter-Drinfeld H-module algebra A gives rise to an associative A-bialgebroid structure on the smash product algebra A#H. They also exhibited an antipode map making A#H the total algebra of a Lu’s Hopf algebroid over A. However, the published proof that the antipode is an antihomomorphism covers only a special case. In this paper, a complete proof of the antihomomorphism property is exhibited. Moreover, a new generalized version of the construction is provided. Its input is a compatible pair A and A^op of braided commutative Yetter-Drinfeld H-module algebras, and output is a symmetric Hopf algebroid A#H = H#A^op over A. This construction does not require that the antipode of H is invertible.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Martina Stojić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus