Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1245933

Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential


Kim, Panki; Song, Renming; Vondraček, Zoran
Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential // Mathematische Annalen (2023) doi:10.1007/s00208-022-02544-z (znanstveni, prihvaćen)


CROSBI ID: 1245933 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential

Autori
Kim, Panki ; Song, Renming ; Vondraček, Zoran

Vrsta, podvrsta
Radovi u časopisima, znanstveni

Izvornik
Mathematische Annalen (2023)

Status rada
Prihvaćen

Ključne riječi
Jump processes, jump kernel, jump kernel degenerate at the boundary, Carleson estimate, boundary Harnack principle, Green function

Sažetak
In this paper we consider the Dirichlet form on the half-space R^d_+ defined by the jump kernel J(x, y) = |x − y|^{; ; ; −d−α}; ; ; B(x, y), where B(x, y) can be degenerate at the boundary. Unlike our previous works [16, 17] where we imposed critical killing, here we assume that the killing potential is identically zero. In case α ∈ (1, 2) we first show that the corresponding Hunt process has finite lifetime and dies at the boundary. Then, as our main contribution, we prove the boundary Harnack principle and establish sharp two-sided Green function estimates. Our results cover the case of the censored α-stable process, α ∈ (1, 2), in the half-space studiedin [2].

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-IP-2018-01-4197 - Stohastički procesi sa skokovima i nelokalni operatori (DISPNOLO) (Vondraček, Zoran, HRZZ - 2018-01) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Zoran Vondraček (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Kim, Panki; Song, Renming; Vondraček, Zoran
Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential // Mathematische Annalen (2023) doi:10.1007/s00208-022-02544-z (znanstveni, prihvaćen)
Kim, P., Song, R. & Vondraček, Z. (2023) Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential. Prihvaćen za objavljivanje u Mathematische Annalen. [Preprint] doi:10.1007/s00208-022-02544-z.
@unknown{unknown, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2023}, DOI = {10.1007/s00208-022-02544-z}, keywords = {Jump processes, jump kernel, jump kernel degenerate at the boundary, Carleson estimate, boundary Harnack principle, Green function}, journal = {Mathematische Annalen}, doi = {10.1007/s00208-022-02544-z}, title = {Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential}, keyword = {Jump processes, jump kernel, jump kernel degenerate at the boundary, Carleson estimate, boundary Harnack principle, Green function} }
@unknown{unknown, author = {Kim, Panki and Song, Renming and Vondra\v{c}ek, Zoran}, year = {2023}, DOI = {10.1007/s00208-022-02544-z}, keywords = {Jump processes, jump kernel, jump kernel degenerate at the boundary, Carleson estimate, boundary Harnack principle, Green function}, journal = {Mathematische Annalen}, doi = {10.1007/s00208-022-02544-z}, title = {Potential theory of Dirichlet forms degenerate at the boundary: the case of no killing potential}, keyword = {Jump processes, jump kernel, jump kernel degenerate at the boundary, Carleson estimate, boundary Harnack principle, Green function} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font