Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1245572

Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting


Jovanović, Bojan; Shabanaj, Kamer; Ševrović, Marko
Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting // Sustainability, 15 (2022), 1; 749, 18 doi:10.3390/su15010749 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1245572 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting

Autori
Jovanović, Bojan ; Shabanaj, Kamer ; Ševrović, Marko

Izvornik
Sustainability (2071-1050) 15 (2022), 1; 749, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
passenger demand prediction ; travel demand modelling ; public transit planning ; big data ; statistical significance testing ; multiple regression

Sažetak
This article addresses the possibility of improving the traditional bus passenger demand forecasting models by leveraging additional data from relevant big data systems and proposes a conceptual framework for developing big data-based forecasting models. Based on the data extracted from available big data systems, the authors have developed a conceptual procedural framework for determining the significance of statistical indicators that can potentially be used as predictor variables for forecasting future passenger demand. At the first stage of the proposed framework, the statistical significance of partial linear correlations between observed statistical indicators and bus ridership demand are determined. All statistical indicators identified as potentially significant are further tested for multicollinearity, homoscedasticity, autocorrelation and multivariate normality to determine the suitability of their inclusion in the final equation of the prediction model. The final formulation of the predictive model was developed using stepwise regression. The R programming language was used to implement the proposed procedural framework to develop a model suitable for predicting passenger demand on the Prizren-Zagreb international bus route. Two predictor variables identified as the most statistically significant are the population of Kosovo and the annual number of Kosovo citizens crossing the Croatian border by bus.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport



POVEZANOST RADA


Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Marko Ševrović (autor)

Avatar Url Bojan Jovanović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi www.mdpi.com

Citiraj ovu publikaciju:

Jovanović, Bojan; Shabanaj, Kamer; Ševrović, Marko
Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting // Sustainability, 15 (2022), 1; 749, 18 doi:10.3390/su15010749 (međunarodna recenzija, članak, znanstveni)
Jovanović, B., Shabanaj, K. & Ševrović, M. (2022) Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting. Sustainability, 15 (1), 749, 18 doi:10.3390/su15010749.
@article{article, author = {Jovanovi\'{c}, Bojan and Shabanaj, Kamer and \v{S}evrovi\'{c}, Marko}, year = {2022}, pages = {18}, DOI = {10.3390/su15010749}, chapter = {749}, keywords = {passenger demand prediction, travel demand modelling, public transit planning, big data, statistical significance testing, multiple regression}, journal = {Sustainability}, doi = {10.3390/su15010749}, volume = {15}, number = {1}, issn = {2071-1050}, title = {Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting}, keyword = {passenger demand prediction, travel demand modelling, public transit planning, big data, statistical significance testing, multiple regression}, chapternumber = {749} }
@article{article, author = {Jovanovi\'{c}, Bojan and Shabanaj, Kamer and \v{S}evrovi\'{c}, Marko}, year = {2022}, pages = {18}, DOI = {10.3390/su15010749}, chapter = {749}, keywords = {passenger demand prediction, travel demand modelling, public transit planning, big data, statistical significance testing, multiple regression}, journal = {Sustainability}, doi = {10.3390/su15010749}, volume = {15}, number = {1}, issn = {2071-1050}, title = {Conceptual Model for Determining the Statistical Significance of Predictive Indicators for Bus Transit Demand Forecasting}, keyword = {passenger demand prediction, travel demand modelling, public transit planning, big data, statistical significance testing, multiple regression}, chapternumber = {749} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font