Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1243975

Rapid extraction of skin physiological parameters from hyperspectral images using machine learning


Manojlović, Teo; Tomanič, Tadej; Štajduhar, Ivan; Milanič, Matija
Rapid extraction of skin physiological parameters from hyperspectral images using machine learning // Applied intelligence (Boston), - (2022), -; -, 21 doi:10.1007/s10489-022-04327-0 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1243975 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Rapid extraction of skin physiological parameters from hyperspectral images using machine learning

Autori
Manojlović, Teo ; Tomanič, Tadej ; Štajduhar, Ivan ; Milanič, Matija

Izvornik
Applied intelligence (Boston) (0924-669X) (2022); 21

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Hyperspectral imaging ; Neural networks ; Diffuse reflectance spectra ; Inverse adding-doubling

Sažetak
Noninvasive assessment of skin structure using hyperspectral images has been intensively studied in recent years. Due to the high computational cost of the classical methods, such as the inverse Monte Carlo (IMC), much research has been done with the aim of using machine learning (ML) methods to reduce the time required for estimating parameters. This study aims to evaluate the accuracy and the estimation speed of the ML methods for this purpose and compare them to the traditionally used inverse adding-doubling (IAD) algorithm. We trained three models – an artificial neural network (ANN), a 1D convolutional neural network (CNN), and a random forests (RF) model – to predict seven skin parameters. The models were trained on simulated data computed using the adding-doubling algorithm. To improve predictive performance, we introduced a stacked dynamic weighting (SDW) model combining the predictions of all three individually trained models. SDW model was trained by using only a handful of real-world spectra on top of the ANN, CNN and RF models that were trained using simulated data. Models were evaluated based on the estimated parameters’ mean absolute error (MAE), considering the surface inclination angle and comparing skin spectra with spectra fitted by the IAD algorithm. On simulated data, the lowest MAE was achieved by the RF model (0.0030), while the SDW model achieved the lowest MAE on in vivo measured spectra (0.0113). The shortest time to estimate parameters for a single spectrum was 93.05 μs. Results suggest that ML algorithms can produce accurate estimates of human skin optical parameters in near real-time.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Ivan Štajduhar (autor)

Poveznice na cjeloviti tekst rada:

doi doi.org

Citiraj ovu publikaciju:

Manojlović, Teo; Tomanič, Tadej; Štajduhar, Ivan; Milanič, Matija
Rapid extraction of skin physiological parameters from hyperspectral images using machine learning // Applied intelligence (Boston), - (2022), -; -, 21 doi:10.1007/s10489-022-04327-0 (međunarodna recenzija, članak, znanstveni)
Manojlović, T., Tomanič, T., Štajduhar, I. & Milanič, M. (2022) Rapid extraction of skin physiological parameters from hyperspectral images using machine learning. Applied intelligence (Boston), - (-), -, 21 doi:10.1007/s10489-022-04327-0.
@article{article, author = {Manojlovi\'{c}, Teo and Tomani\v{c}, Tadej and \v{S}tajduhar, Ivan and Milani\v{c}, Matija}, year = {2022}, pages = {21}, DOI = {10.1007/s10489-022-04327-0}, chapter = {-}, keywords = {Hyperspectral imaging, Neural networks, Diffuse reflectance spectra, Inverse adding-doubling}, journal = {Applied intelligence (Boston)}, doi = {10.1007/s10489-022-04327-0}, volume = {-}, number = {-}, issn = {0924-669X}, title = {Rapid extraction of skin physiological parameters from hyperspectral images using machine learning}, keyword = {Hyperspectral imaging, Neural networks, Diffuse reflectance spectra, Inverse adding-doubling}, chapternumber = {-} }
@article{article, author = {Manojlovi\'{c}, Teo and Tomani\v{c}, Tadej and \v{S}tajduhar, Ivan and Milani\v{c}, Matija}, year = {2022}, pages = {21}, DOI = {10.1007/s10489-022-04327-0}, chapter = {-}, keywords = {Hyperspectral imaging, Neural networks, Diffuse reflectance spectra, Inverse adding-doubling}, journal = {Applied intelligence (Boston)}, doi = {10.1007/s10489-022-04327-0}, volume = {-}, number = {-}, issn = {0924-669X}, title = {Rapid extraction of skin physiological parameters from hyperspectral images using machine learning}, keyword = {Hyperspectral imaging, Neural networks, Diffuse reflectance spectra, Inverse adding-doubling}, chapternumber = {-} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font