Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1243798

Object Depth Estimation From Line-Scan EMI Data Using Machine Learning


Simic, Marko; Ambrus, Davorin; Bilas, Vedran
Object Depth Estimation From Line-Scan EMI Data Using Machine Learning // IEEE Sensors Conference 2022
Dallas (TX), Sjedinjene Američke Države: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-4 doi:10.1109/sensors52175.2022.9967098 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1243798 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Object Depth Estimation From Line-Scan EMI Data Using Machine Learning

Autori
Simic, Marko ; Ambrus, Davorin ; Bilas, Vedran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

ISBN
978-1-6654-8465-7

Skup
IEEE Sensors Conference 2022

Mjesto i datum
Dallas (TX), Sjedinjene Američke Države, 30.10.2022. - 02.11.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object

Sažetak
In this paper, we present a novel approach to metallic object depth estimation using a pulse induction metal detector in combination with an electromagnetic tracking system. A dipole approximation model is used for modeling the spatial response of the metal detector, while 1D- convolutional neural network is employed for depth estimation. The proposed algorithm is experimentally validated in laboratory conditions. Given a single horizontal pass over a metallic object placed within the range (−10.5, −2.5) cm and (−1, 1) cm for the z and {; ; ; ; x, y}; ; ; ; coordinates, respectively, the algorithm estimates the depth of the object regardless of its shape, size, and material properties with a mean absolute error <4.5 mm .

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Vedran Bilas (autor)

Avatar Url Davorin Ambruš (autor)

Avatar Url Marko Šimić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Simic, Marko; Ambrus, Davorin; Bilas, Vedran
Object Depth Estimation From Line-Scan EMI Data Using Machine Learning // IEEE Sensors Conference 2022
Dallas (TX), Sjedinjene Američke Države: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 1-4 doi:10.1109/sensors52175.2022.9967098 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Simic, M., Ambrus, D. & Bilas, V. (2022) Object Depth Estimation From Line-Scan EMI Data Using Machine Learning. U: IEEE Sensors Conference 2022 doi:10.1109/sensors52175.2022.9967098.
@article{article, author = {Simic, Marko and Ambrus, Davorin and Bilas, Vedran}, year = {2022}, pages = {1-4}, DOI = {10.1109/sensors52175.2022.9967098}, keywords = {Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object}, doi = {10.1109/sensors52175.2022.9967098}, isbn = {978-1-6654-8465-7}, title = {Object Depth Estimation From Line-Scan EMI Data Using Machine Learning}, keyword = {Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dallas (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }
@article{article, author = {Simic, Marko and Ambrus, Davorin and Bilas, Vedran}, year = {2022}, pages = {1-4}, DOI = {10.1109/sensors52175.2022.9967098}, keywords = {Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object}, doi = {10.1109/sensors52175.2022.9967098}, isbn = {978-1-6654-8465-7}, title = {Object Depth Estimation From Line-Scan EMI Data Using Machine Learning}, keyword = {Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Dallas (TX), Sjedinjene Ameri\v{c}ke Dr\v{z}ave} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font