Pregled bibliografske jedinice broj: 1243767
Rapid Object Depth Estimation From Position- Referenced EMI Data Using Machine Learning
Rapid Object Depth Estimation From Position- Referenced EMI Data Using Machine Learning // Ieee sensors journal, PP (2023), 1-1 doi:10.1109/jsen.2023.3234143 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1243767 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Rapid Object Depth Estimation From Position-
Referenced EMI Data Using Machine Learning
Autori
Simic, Marko ; Ambrus, Davorin ; Bilas, Vedran
Izvornik
Ieee sensors journal (1530-437X) PP
(2023);
1-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Depth estimation, metal detector, electromagnetic induction, electromagnetic tracking system, metallic object, convolutional neural network (CNN), machine learning, nonlinear least squares (NLS) inversion.
Sažetak
State-of-the-art methods for localization and detection of small metallic objects using electromagnetic induction (EMI) sensing usually struggle due to the strong correlation between the intrinsic parameters of the object and the object’s depth. In this paper, we present a machine learning-based approach for rapid estimation of metallic object depth from line-scan EMI data. The 1D-convolutional neural network (1D- CNN), trained on a simulated dataset, takes advantage of metal detector (MD) spatial response to extract features from which depth is inferred. Experimental evaluation using a mono-coil pulse induction MD and an electromagnetic (EM) tracking system was performed under laboratory conditions on a large dataset containing arbitrarily oriented objects of different sizes, shapes, and materials. The nonlinear least squares (NLS) inversion was employed as the benchmark method for comparison. The proposed solution shows superior performance over NLS at depths >10 cm. From two passes of MD over the object at depths within the range of 2.5 to 15 cm, our method yields a median absolute error on the order of millimeters.
Izvorni jezik
Engleski
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus