Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1243101

Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images


Benčević, Marin; Qiu, Yuming; Galić, Irena; Pizurica, Aleksandra
Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images // Sensors, 23 (2023), 2; 633, 16 doi:10.3390/s23020633 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1243101 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images

Autori
Benčević, Marin ; Qiu, Yuming ; Galić, Irena ; Pizurica, Aleksandra

Izvornik
Sensors (1424-8220) 23 (2023), 2; 633, 16

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
biomedical images ; convolutional neural networks ; medical image segmentation ; semantic segmentation

Sažetak
Medical images are often of huge size, which presents a challenge in terms of memory requirements when training machine learning models. Commonly, the images are downsampled to overcome this challenge, but this leads to a loss of information. We present a general approach for training semantic segmentation neural networks on much smaller input sizes called Segment- then-Segment. To reduce the input size, we use image crops instead of downscaling. One neural network performs the initial segmentation on a downscaled image. This segmentation is then used to take the most salient crops of the full-resolution image with the surrounding context. Each crop is segmented using a second specially trained neural network. The segmentation masks of each crop are joined to form the final output image. We evaluate our approach on multiple medical image modalities (microscopy, colonoscopy, and CT) and show that this approach greatly improves segmentation performance with small network input sizes when compared to baseline models trained on downscaled images, especially in terms of pixel-wise recall.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Profili:

Avatar Url Marin Benčević (autor)

Avatar Url Irena Galić (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Benčević, Marin; Qiu, Yuming; Galić, Irena; Pizurica, Aleksandra
Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images // Sensors, 23 (2023), 2; 633, 16 doi:10.3390/s23020633 (međunarodna recenzija, članak, znanstveni)
Benčević, M., Qiu, Y., Galić, I. & Pizurica, A. (2023) Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images. Sensors, 23 (2), 633, 16 doi:10.3390/s23020633.
@article{article, author = {Ben\v{c}evi\'{c}, Marin and Qiu, Yuming and Gali\'{c}, Irena and Pizurica, Aleksandra}, year = {2023}, pages = {16}, DOI = {10.3390/s23020633}, chapter = {633}, keywords = {biomedical images, convolutional neural networks, medical image segmentation, semantic segmentation}, journal = {Sensors}, doi = {10.3390/s23020633}, volume = {23}, number = {2}, issn = {1424-8220}, title = {Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images}, keyword = {biomedical images, convolutional neural networks, medical image segmentation, semantic segmentation}, chapternumber = {633} }
@article{article, author = {Ben\v{c}evi\'{c}, Marin and Qiu, Yuming and Gali\'{c}, Irena and Pizurica, Aleksandra}, year = {2023}, pages = {16}, DOI = {10.3390/s23020633}, chapter = {633}, keywords = {biomedical images, convolutional neural networks, medical image segmentation, semantic segmentation}, journal = {Sensors}, doi = {10.3390/s23020633}, volume = {23}, number = {2}, issn = {1424-8220}, title = {Segment-then-Segment: Context-Preserving Crop-Based Segmentation for Large Biomedical Images}, keyword = {biomedical images, convolutional neural networks, medical image segmentation, semantic segmentation}, chapternumber = {633} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font