Pregled bibliografske jedinice broj: 1242301
A Privacy Preservation Pipeline for Personally Identifiable Data in Images Using Convolutional and Transformer Architectures
A Privacy Preservation Pipeline for Personally Identifiable Data in Images Using Convolutional and Transformer Architectures // Proceedings of MIPRO 2022 45th Jubilee International Convention / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022. str. 1063-1068 doi:10.23919/mipro55190.2022.9803731 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1242301 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Privacy Preservation Pipeline for Personally
Identifiable Data in Images Using Convolutional
and Transformer Architectures
Autori
Brkić, Karla ; Hrkać, Tomislav ; Kalafatić, Zoran
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MIPRO 2022 45th Jubilee International Convention
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2022, 1063-1068
Skup
45th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2022)
Mjesto i datum
Opatija, Hrvatska, 23.05.2022. - 27.05.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
sensitive data, de-identification, privacy protection, generative adversarial networks, transformers, machine learning, deep learning
Sažetak
Image and video data of people, shared voluntarily and involuntarily, is ubiquitous. There is an increased need for techniques that enable privacy protection via removal of personally identifiable information in such data, spurred by regulatory interest and increased social awareness of privacy implications. In this paper, we introduce a privacy preservation pipeline that enables de- identifying personal data in images and videos via replacement image synthesis while retaining data utility. We utilize the recently proposed convolutional VQGANs with autoregressive transformers to synthesize realistic and fully deidentified images of people that are then blended with the original scene. Experimental results show that the method provides strong de-identification while retaining the realism of the scene.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb