Pregled bibliografske jedinice broj: 1242292
Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain
Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain // Complex Networks and Their Applications VII
Cambridge, Ujedinjeno Kraljevstvo: Springer, 2018. str. 508-520 doi:10.1007/978-3-030-05414-4_41 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1242292 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Inferring Short-Term Volatility Indicators from the Bitcoin Blockchain
Autori
Antulov-Fantulin, Nino ; Tolic, Dijana ; Piskorec, Matija ; Ce, Zhang ; Vodenska, Irena
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Complex Networks and Their Applications VII
/ - : Springer, 2018, 508-520
Skup
Complex Networks 2018
Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 11.12.2018. - 13.12.2018
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Financial networks ; Machine learning ; Bitcoin ; Blockchain
Sažetak
In this paper, we study the possibility of inferring early warning indicators (EWIs) for periods of extreme bitcoin price volatility using features obtained from Bitcoin daily transaction graphs. We infer the low-dimensional representations of transaction graphs in the time period from 2012 to 2017 using Bitcoin blockchain, and demonstrate how these representations can be used to predict extreme price volatility events. Our EWI, which is obtained with a non-negative decomposition, contains more predictive information than those obtained with singular value decomposition or scalar value of the total Bitcoin transaction volume.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne prirodne znanosti, Računarstvo, Interdisciplinarne tehničke znanosti
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus