Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1242276

Functional bounds for Exton's double hypergeometric X function


Jankov Maširević, Dragana; Poganj, Tibor
Functional bounds for Exton's double hypergeometric X function // Journal of mathematical inequalities, 17 (2023), 1; 259-267 doi:10.7153/jmi-2023-17-18 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1242276 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Functional bounds for Exton's double hypergeometric X function

Autori
Jankov Maširević, Dragana ; Poganj, Tibor

Izvornik
Journal of mathematical inequalities (1846-579X) 17 (2023), 1; 259-267

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Modified Bessel functions of the first kind ; McKay I_nu Bessel distribution ; Grünwald-Letnikov fractional derivative ; Incomplete Lipschitz-Hankel integral ; Exton X function ; Srivastava-Daoust S function ; Functional bounding inequality

Sažetak
We obtain functional and uniform bounds for Exton's generalized hypergeometric X function of two variables, and an associated incomplete Lipschitz-Hankel integral as an auxiliary result. Another derivation method gives a by-product for the Srivastava-Daoust generalized hypergeometric function of three variables. The main tools are certain representation formulae for the McKay I_nu Bessel probability distribution's cumulative distribution function established recently in [1, 2].

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka,
Sveučilište u Osijeku, Odjel za matematiku

Poveznice na cjeloviti tekst rada:

doi jmi.ele-math.com

Citiraj ovu publikaciju:

Jankov Maširević, Dragana; Poganj, Tibor
Functional bounds for Exton's double hypergeometric X function // Journal of mathematical inequalities, 17 (2023), 1; 259-267 doi:10.7153/jmi-2023-17-18 (međunarodna recenzija, članak, znanstveni)
Jankov Maširević, D. & Poganj, T. (2023) Functional bounds for Exton's double hypergeometric X function. Journal of mathematical inequalities, 17 (1), 259-267 doi:10.7153/jmi-2023-17-18.
@article{article, author = {Jankov Ma\v{s}irevi\'{c}, Dragana and Poganj, Tibor}, year = {2023}, pages = {259-267}, DOI = {10.7153/jmi-2023-17-18}, keywords = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Gr\"{u}nwald-Letnikov fractional derivative, Incomplete Lipschitz-Hankel integral, Exton X function, Srivastava-Daoust S function, Functional bounding inequality}, journal = {Journal of mathematical inequalities}, doi = {10.7153/jmi-2023-17-18}, volume = {17}, number = {1}, issn = {1846-579X}, title = {Functional bounds for Exton's double hypergeometric X function}, keyword = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Gr\"{u}nwald-Letnikov fractional derivative, Incomplete Lipschitz-Hankel integral, Exton X function, Srivastava-Daoust S function, Functional bounding inequality} }
@article{article, author = {Jankov Ma\v{s}irevi\'{c}, Dragana and Poganj, Tibor}, year = {2023}, pages = {259-267}, DOI = {10.7153/jmi-2023-17-18}, keywords = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Gr\"{u}nwald-Letnikov fractional derivative, Incomplete Lipschitz-Hankel integral, Exton X function, Srivastava-Daoust S function, Functional bounding inequality}, journal = {Journal of mathematical inequalities}, doi = {10.7153/jmi-2023-17-18}, volume = {17}, number = {1}, issn = {1846-579X}, title = {Functional bounds for Exton's double hypergeometric X function}, keyword = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Gr\"{u}nwald-Letnikov fractional derivative, Incomplete Lipschitz-Hankel integral, Exton X function, Srivastava-Daoust S function, Functional bounding inequality} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet
  • Zentrallblatt für Mathematik/Mathematical Abstracts


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font