Pregled bibliografske jedinice broj: 1241943
3D U-Net based method for fast segmentation of whole heart from CT images
3D U-Net based method for fast segmentation of whole heart from CT images // 2022 International Symposium ELMAR
Zagreb: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 159-164 doi:10.1109/elmar55880.2022.9899815 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1241943 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
3D U-Net based method for fast segmentation of whole heart from CT images
Autori
Novoselnik, Filip ; Leventic, Hrvoje ; Galic, Irena ; Babin, Danilo
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
2022 International Symposium ELMAR
/ - Zagreb : Institute of Electrical and Electronics Engineers (IEEE), 2022, 159-164
ISBN
978-1-6654-7003-2
Skup
64th International Symposium ELMAR-2022
Mjesto i datum
Zadar, Hrvatska, 12.09.2022. - 14.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Whole heart segmentation ; deep learning ; deep neural networks ; NoNewNet
Sažetak
There is an increasing number of clinical applications where deep learning plays an important role. Heart chamber segmentation enables delineation of anatomical structures of heart and it is a prerequisite for a wide range of clinical applications. 3D U-Net architecture consistently achieves the highest scores in various medical imaging challenges. NoNewNet architecture is a modification of the 3D U-Net architecture which was shown to outperform the original 3D U-Net and was recently implemented inside the NiftyNet package. In this paper we demonstrate that with the properly trained NoNewNet network and NiftyNet we can outperform the current state-of-the-art networks. The evaluation of the trained network was performed on 20 3D CT images from MICCAI 2017 Multi-Modality Whole Heart Segmentation Challenge dataset using five-fold cross-validation. We experimentally prove that border size can significantly reduce inference time without affecting segmentation accuracy. Additionally, we provide the discussion of the effects of some of the NiftyNet configuration parameters on the performance of the network.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne biotehničke znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Projekti:
UIP-2017-05-4968 - Metode za interpretaciju medicinskih snimki za detaljnu analizu zdravlja srca (IMAGINEHEART) (Galić, Irena, HRZZ - 2017-05) ( CroRIS)
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek