Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1241190

Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm


Anđelić, Nikola; Lorencin, Ivan; Baressi Šegota, Sandi; Car, Zlatan
Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm // Applied sciences (Basel), 13 (2023), 1; 1-33 doi:10.3390/app13010574 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1241190 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm

Autori
Anđelić, Nikola ; Lorencin, Ivan ; Baressi Šegota, Sandi ; Car, Zlatan

Izvornik
Applied sciences (Basel) (2076-3417) 13 (2023), 1; 1-33

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
ADASYN ; borderline SMOTE ; genetic programming-symbolic classifier ; Hepatitis C ; fibrosis ; cirrhosis ; SMOTE

Sažetak
Hepatitis C is an infectious disease which is caused by the Hepatitis C virus (HCV) and the virus primarily affects the liver. Based on the publicly available dataset used in this paper the idea is to develop a mathematical equation that could be used to detect HCV patients with high accuracy based on the enzymes, proteins, and biomarker values contained in a patient’s blood sample using genetic programming symbolic classification (GPSC) algorithm. Not only that, but the idea was also to obtain a mathematical equation that could detect the progress of the disease i.e., Hepatitis C, Fibrosis, and Cirrhosis using the GPSC algorithm. Since the original dataset was imbalanced (a large number of healthy patients versus a small number of Hepatitis C/Fibrosis/Cirrhosis patients) the dataset was balanced using random oversampling, SMOTE, ADSYN, and Borderline SMOTE methods. The symbolic expressions (mathematical equations) were obtained using the GPSC algorithm using a rigorous process of 5-fold cross-validation with a random hyperparameter search method which had to be developed for this problem. To evaluate each symbolic expression generated with GPSC the mean and standard deviation values of accuracy (ACC), the area under the receiver operating characteristic curve (AUC), precision, recall, and F1-score were obtained. In a simple binary case (healthy vs. Hepatitis C patients) the best case was achieved with a dataset balanced with the Borderline SMOTE method. The results are ACC ± SD(ACC), AUC ± SD(AUC), Precision ± SD(Precision), Recall ± SD(Recall), and F1 − score ± SD(F1 − score) equal to 0.99 ± 5.8 × 10−3 , 0.99 ± 5.4 × 10−3, 0.998 ± 1.3 × 10−3, 0.98 ± 1.19 × 10−3, and 0.99 ± 5.39 × 10−3, respectively. For the multiclass problem, OneVsRestClassifer was used in combination with GPSC 5-fold cross-validation and random hyperparameter search, and the best case was achieved with a dataset balanced with the Borderline SMOTE method. To evaluate symbolic expressions obtained in this case previous evaluation metric methods were used however for AUC, Precision, Recall, and F1 − score the macro values were computed since this method calculates metrics for each label, and find their unweighted mean value. In multiclass case the ACC ± SD(ACC), AUCmacro ± SD(AUC), Precisionmacro ± SD(Precision), Recallmacro ± SD(Recall), and F1 − scoremacro ± SD(F1 − score) are equal to 0.934 ± 9 × 10−3, 0.987 ± 1.8 × 10−3, 0.942 ± 6.9 × 10−3, 0.934 ± 7.84 × 10−3 and 0.932 ± 8.4 × 10−3, respectively. For the best binary and multi-class cases, the symbolic expressions are shown and evaluated on the original dataset.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Temeljne medicinske znanosti



POVEZANOST RADA


Projekti:
InoUstZnVO-CIII-HR-0108-10 - Concurrent Product and Technology Development - Teaching, Research and Implementation of Joint Programs Oriented in Production and Industrial Engineering (Car, Zlatan, InoUstZnVO - CEEPUS) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )

Citiraj ovu publikaciju:

Anđelić, Nikola; Lorencin, Ivan; Baressi Šegota, Sandi; Car, Zlatan
Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm // Applied sciences (Basel), 13 (2023), 1; 1-33 doi:10.3390/app13010574 (međunarodna recenzija, članak, znanstveni)
Anđelić, N., Lorencin, I., Baressi Šegota, S. & Car, Z. (2023) Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm. Applied sciences (Basel), 13 (1), 1-33 doi:10.3390/app13010574.
@article{article, author = {An\djeli\'{c}, Nikola and Lorencin, Ivan and Baressi \v{S}egota, Sandi and Car, Zlatan}, year = {2023}, pages = {1-33}, DOI = {10.3390/app13010574}, keywords = {ADASYN, borderline SMOTE, genetic programming-symbolic classifier, Hepatitis C, fibrosis, cirrhosis, SMOTE}, journal = {Applied sciences (Basel)}, doi = {10.3390/app13010574}, volume = {13}, number = {1}, issn = {2076-3417}, title = {Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm}, keyword = {ADASYN, borderline SMOTE, genetic programming-symbolic classifier, Hepatitis C, fibrosis, cirrhosis, SMOTE} }
@article{article, author = {An\djeli\'{c}, Nikola and Lorencin, Ivan and Baressi \v{S}egota, Sandi and Car, Zlatan}, year = {2023}, pages = {1-33}, DOI = {10.3390/app13010574}, keywords = {ADASYN, borderline SMOTE, genetic programming-symbolic classifier, Hepatitis C, fibrosis, cirrhosis, SMOTE}, journal = {Applied sciences (Basel)}, doi = {10.3390/app13010574}, volume = {13}, number = {1}, issn = {2076-3417}, title = {Development of Symbolic Expressions for the Detection of Hepatitis C Patients and the Disease Progression from Blood Parameters Using Genetic Programming- Symbolic Classification Algorithm}, keyword = {ADASYN, borderline SMOTE, genetic programming-symbolic classifier, Hepatitis C, fibrosis, cirrhosis, SMOTE} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font