Pregled bibliografske jedinice broj: 1241052
The evaluation of the RGB and multispectral camera on the unmanned aerial vehicle (UAV) for the machine learning classification of maize
The evaluation of the RGB and multispectral camera on the unmanned aerial vehicle (UAV) for the machine learning classification of maize // Poljoprivreda (Osijek), 28 (2022), 2; 74-80 doi:10.18047/poljo.28.2.10 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1241052 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The evaluation of the RGB and multispectral camera on
the unmanned aerial vehicle (UAV) for the machine
learning classification of maize
(The evaluation of the RGB and multispectral camera
on the unmanned aerial vehicle (UAV)
for the machine learning classification of maize)
Autori
Jurišić, Mladen ; Radočaj, Dorijan ; Plaščak, Ivan ; Galić Subašić, Daria ; Petrović, Davor
Izvornik
Poljoprivreda (Osijek) (1330-7142) 28
(2022), 2;
74-80
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
crop density ; Random Forest ; supervised classification ; spectral analysis ; normalized difference vegetation index (NDVI)
Sažetak
This study investigated a crop and soil classification applying the Random Forest machine learning algorithm based on the red-green-blue (RGB) and multispectral sensor imaging deploying an unmanned aerial vehicle (UAV). The study area covered two 10 x 10 m subsets of a maize-sown agricultural parcel near Koška. The highest overall accuracy was obtained in the combination of the red edge (RE), near-infrared (NIR), and normalized difference vegetation index (NDVI) in both subsets, with a 99.8% and 91.8% overall accuracy, respectively. The conducted analysis proved that the RGB camera obtained sufficient accuracy and was an acceptable solution to the soil and vegetation classification. Additionally, a multispectral camera and spectral analysis allowed for a more detailed analysis, primarily of the spectrally similar areas. Thus, this procedure represents a basis for both the crop density calculation and weed detection while deploying an unmanned aerial vehicle. To ensure crop classification effectiveness in practical application, it is necessary to further integrate the weed classes in the current vegetation class and separate them into crop and weed classes.
Izvorni jezik
Engleski
Znanstvena područja
Interdisciplinarne tehničke znanosti, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Ustanove:
Fakultet agrobiotehničkih znanosti Osijek
Profili:
Mladen Jurišić
(autor)
Davor Petrović
(autor)
Ivan Plaščak
(autor)
Dorijan Radočaj
(autor)
Daria Galić Subasić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus