Pregled bibliografske jedinice broj: 1239122
On multivariable Plancherel-Pólya inequality and truncation error upper bounds in irregular sampling
On multivariable Plancherel-Pólya inequality and truncation error upper bounds in irregular sampling // Sampling theory, signal processing, and data analysis, 21 (2023), 1; 5, 13 doi:10.1007/s43670-022-00044-4 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1239122 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On multivariable Plancherel-Pólya inequality and
truncation error upper bounds in irregular sampling
Autori
Poganj, Tibor
Izvornik
Sampling theory, signal processing, and data analysis (2730-5716) 21
(2023), 1;
5, 13
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Bernstein function class ; Entire exponentially bounded functions of several variables ; Paley-Wiener function class ; Placherel-Pólya inequality ; Irregular sampling ; Truncation error upper bounds
Sažetak
In the note is shown that for the d-dimensional Bernstein functions class B_{; ; ; ; ; ; ; sigma, d}; ; ; ; ; ; ; ^p, p>0, the Plancherel-Pólya inequality holds with the constant which equals to the product of the constants occuring in the one-dimensional cases. Related truncation error upper bounds are precised in the irregular sampling restoration of functions in several variables.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts