Pregled bibliografske jedinice broj: 1238505
Estimation of Excitation Current of a Synchronous Machine Using Machine Learning Methods
Estimation of Excitation Current of a Synchronous Machine Using Machine Learning Methods // Computers (Basel), 12 (2023), 1; 1-25 doi:10.3390/computers12010001 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1238505 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Estimation of Excitation Current of a Synchronous
Machine Using Machine Learning Methods
Autori
Glučina, Matko ; Anđelić, Nikola ; Lorencin, Ivan ; Car, Zlatan
Izvornik
Computers (Basel) (2073-431X) 12
(2023), 1;
1-25
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
artificial intelligence algorithms ; excitation current ; regression algorithms ; synchronous machine
(algoritmi umjetne inteligencije ; uzbudna struja ; regresijski algoritmi ; sinkroni stroj ;)
Sažetak
A synchronous machine is an electro-mechanical converter consisting of a stator and a rotor. The stator is the stationary part of a synchronous machine that is made of phase-shifted armature windings in which voltage is generated and the rotor is the rotating part made using permanent magnets or electromagnets. The excitation current is a significant parameter of the synchronous machine, and it is of immense importance to continuously monitor possible value changes to ensure the smooth and high-quality operation of the synchronous machine itself. The purpose of this paper is to estimate the excitation current on a publicly available dataset, using the following input parameters: Iy: load current ; PF: power factor ; e: power factor error ; and df : changing of excitation current of synchronous machine, using artificial intelligence algorithms. The algorithms used in this research were: k- nearest neighbors, linear, random forest, ridge, stochastic gradient descent, support vector regressor, multi-layer perceptron, and extreme gradient boost regressor, where the worst result was elasticnet, with R2 = −0.0001, MSE = 0.0297, and MAPE = 0.1442 ; the best results were provided by extreme boosting regressor, with R2 = 0.9963, MSE = 0.0001, and MAPE = 0.0057, respectively.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
KK.01.1.1.01.0009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (EK )
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci
Poveznice na cjeloviti tekst rada:
doi www.mdpi.com www.researchgate.netPoveznice na istraživačke podatke:
doi.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus