Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1238104

A Machine Learning Approach to Forecast International Trade: The Case of Croatia


Jošić, Hrvoje; Žmuk, Berislav
A Machine Learning Approach to Forecast International Trade: The Case of Croatia // Business systems research, 13 (2022), 3; 144-160 doi:10.2478/bsrj-2022-0030 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1238104 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Machine Learning Approach to Forecast International Trade: The Case of Croatia

Autori
Jošić, Hrvoje ; Žmuk, Berislav

Izvornik
Business systems research (1847-8344) 13 (2022), 3; 144-160

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
machine learning ; WEKA ; international trade ; MAPE ; Multilayer perceptron ; Croatia

Sažetak
Background: This paper presents a machine learning approach to forecast Croatia's international bilateral trade. Objectives: The goal of this paper is to evaluate the performance of machine learning algorithms in predicting international bilateral trade flows related to imports and exports in the case of Croatia. Methods/Approach: The dataset on Croatian bilateral trade with over 180 countries worldwide from 2001 to 2019 is assembled using main variables from the gravity trade model. To forecast values of Croatian bilateral exports and imports for a horizon of one year (the year 2020), machine learning algorithms (Gaussian processes, Linear regression, and Multilayer perceptron) have been used. Each forecasting algorithm is evaluated by calculating mean absolute percentage errors (MAPE). Results: It was found that machine learning algorithms have a very good predicting ability in forecasting Croatian bilateral trade, with neural network Multilayer perceptron having the best performance among the other machine learning algorithms. Conclusions Main findings from this paper can be important for economic policymakers and other subjects in this field of research. Timely information about the changes in trends and projections of future trade flows can significantly affect decision-making related to international bilateral trade flows.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Berislav Žmuk (autor)

Avatar Url Hrvoje Jošić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi hrcak.srce.hr

Citiraj ovu publikaciju:

Jošić, Hrvoje; Žmuk, Berislav
A Machine Learning Approach to Forecast International Trade: The Case of Croatia // Business systems research, 13 (2022), 3; 144-160 doi:10.2478/bsrj-2022-0030 (međunarodna recenzija, članak, znanstveni)
Jošić, H. & Žmuk, B. (2022) A Machine Learning Approach to Forecast International Trade: The Case of Croatia. Business systems research, 13 (3), 144-160 doi:10.2478/bsrj-2022-0030.
@article{article, author = {Jo\v{s}i\'{c}, Hrvoje and \v{Z}muk, Berislav}, year = {2022}, pages = {144-160}, DOI = {10.2478/bsrj-2022-0030}, keywords = {machine learning, WEKA, international trade, MAPE, Multilayer perceptron, Croatia}, journal = {Business systems research}, doi = {10.2478/bsrj-2022-0030}, volume = {13}, number = {3}, issn = {1847-8344}, title = {A Machine Learning Approach to Forecast International Trade: The Case of Croatia}, keyword = {machine learning, WEKA, international trade, MAPE, Multilayer perceptron, Croatia} }
@article{article, author = {Jo\v{s}i\'{c}, Hrvoje and \v{Z}muk, Berislav}, year = {2022}, pages = {144-160}, DOI = {10.2478/bsrj-2022-0030}, keywords = {machine learning, WEKA, international trade, MAPE, Multilayer perceptron, Croatia}, journal = {Business systems research}, doi = {10.2478/bsrj-2022-0030}, volume = {13}, number = {3}, issn = {1847-8344}, title = {A Machine Learning Approach to Forecast International Trade: The Case of Croatia}, keyword = {machine learning, WEKA, international trade, MAPE, Multilayer perceptron, Croatia} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Baidu Scholar
  • Cabell's Directory
  • CEJSH
  • Celdes
  • Clarivate Analytics - Web of Science - Emerging Sources Citation Index (ESCI-WoS)
  • CNKI Scholar
  • CNPIEC
  • DOAJ
  • EBSCO
  • EBSCO Discovery Service
  • Elsevier – SCOPUS
  • ERIH PLUS
  • Genamics JournalSeek
  • Google Scholar
  • Hrcak
  • Inspec
  • J-Gate
  • JournalGuide
  • JournalTOCs
  • KESLI-NDSL
  • Naviga (Softweco)
  • Primo Central (ExLibris)
  • ProQuest
  • Publons
  • ReadCube


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font