Pregled bibliografske jedinice broj: 1237775
Peach firmness prediction using optimized regression trees models
Peach firmness prediction using optimized regression trees models // Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation" / Katalinić, Branko (ur.).
Beč, Austrija; online: DAAAM International Vienna, 2022. str. 0480-0489 doi:10.2507/33rd.daaam.proceedings.067 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1237775 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Peach firmness prediction using optimized regression
trees models
Autori
Ivanovski, Tomislav ; Zhang, Xiaoshuan ; Jemrić, Tomislav ; Gulić, Marko ; Matetić, Maja
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation"
/ Katalinić, Branko - : DAAAM International Vienna, 2022, 0480-0489
ISBN
978-3-902734-36-5
Skup
33rd DAAAM International Symposium
Mjesto i datum
Beč, Austrija; online, 27.10.2022. - 28.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Peach firmness prediction ; regression trees ; global optimization ; machine learning ; metaheuristics
Sažetak
The paper focuses on creating accurate model for peach firmness prediction. For this purpose, multiple machine learning models and their optimized variations are developed and compared. Because of its simplicity and robustness, multiple linear regression is used as a base-line model for predicting peach firmness. It assumes a linear relationship between numerical predictors and the outcome. Regression trees is the second developed model. It is a flexible data-driven model that can be used for predicting numerical outcome. The experiment aims to investigate the possibility of improving regression tree model using various metaheuristic optimization techniques implemented in metaheuristicOpt and GA R packages. As a proof of concept, prediction accuracy between multiple linear regression, regression trees and optimized regression trees models is compared. The results show that it is possible to improve the peach firmness prediction accuracy of regression trees model using metaheuristic algorithms.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Poljoprivreda (agronomija), Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
--uniri-drustv-18-122 - Dubinska analiza tokova podataka za pametno upravljanje hladnim lancem (SmaCC) (SMACC) (Matetić, Maja) ( CroRIS)
Ustanove:
Pomorski fakultet, Rijeka,
Agronomski fakultet, Zagreb,
Fakultet informatike i digitalnih tehnologija, Rijeka