Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1237775

Peach firmness prediction using optimized regression trees models


Ivanovski, Tomislav; Zhang, Xiaoshuan; Jemrić, Tomislav; Gulić, Marko; Matetić, Maja
Peach firmness prediction using optimized regression trees models // Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation" / Katalinić, Branko (ur.).
Beč, Austrija; online: DAAAM International Vienna, 2022. str. 0480-0489 doi:10.2507/33rd.daaam.proceedings.067 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1237775 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Peach firmness prediction using optimized regression trees models

Autori
Ivanovski, Tomislav ; Zhang, Xiaoshuan ; Jemrić, Tomislav ; Gulić, Marko ; Matetić, Maja

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation" / Katalinić, Branko - : DAAAM International Vienna, 2022, 0480-0489

ISBN
978-3-902734-36-5

Skup
33rd DAAAM International Symposium

Mjesto i datum
Beč, Austrija; online, 27.10.2022. - 28.10.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Peach firmness prediction ; regression trees ; global optimization ; machine learning ; metaheuristics

Sažetak
The paper focuses on creating accurate model for peach firmness prediction. For this purpose, multiple machine learning models and their optimized variations are developed and compared. Because of its simplicity and robustness, multiple linear regression is used as a base-line model for predicting peach firmness. It assumes a linear relationship between numerical predictors and the outcome. Regression trees is the second developed model. It is a flexible data-driven model that can be used for predicting numerical outcome. The experiment aims to investigate the possibility of improving regression tree model using various metaheuristic optimization techniques implemented in metaheuristicOpt and GA R packages. As a proof of concept, prediction accuracy between multiple linear regression, regression trees and optimized regression trees models is compared. The results show that it is possible to improve the peach firmness prediction accuracy of regression trees model using metaheuristic algorithms.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Poljoprivreda (agronomija), Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--uniri-drustv-18-122 - Dubinska analiza tokova podataka za pametno upravljanje hladnim lancem (SmaCC) (SMACC) (Matetić, Maja) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka,
Agronomski fakultet, Zagreb,
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Maja Matetić (autor)

Avatar Url Marko Gulić (autor)

Avatar Url Tomislav Jemrić (autor)

Poveznice na cjeloviti tekst rada:

doi www.daaam.info daaam.info

Citiraj ovu publikaciju:

Ivanovski, Tomislav; Zhang, Xiaoshuan; Jemrić, Tomislav; Gulić, Marko; Matetić, Maja
Peach firmness prediction using optimized regression trees models // Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation" / Katalinić, Branko (ur.).
Beč, Austrija; online: DAAAM International Vienna, 2022. str. 0480-0489 doi:10.2507/33rd.daaam.proceedings.067 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ivanovski, T., Zhang, X., Jemrić, T., Gulić, M. & Matetić, M. (2022) Peach firmness prediction using optimized regression trees models. U: Katalinić, B. (ur.)Proceedings of the 33rd International DAAAM Virtual Symposium "Intelligent Manufacturing & Automation" doi:10.2507/33rd.daaam.proceedings.067.
@article{article, author = {Ivanovski, Tomislav and Zhang, Xiaoshuan and Jemri\'{c}, Tomislav and Guli\'{c}, Marko and Mateti\'{c}, Maja}, editor = {Katalini\'{c}, B.}, year = {2022}, pages = {0480-0489}, DOI = {10.2507/33rd.daaam.proceedings.067}, keywords = {Peach firmness prediction, regression trees, global optimization, machine learning, metaheuristics}, doi = {10.2507/33rd.daaam.proceedings.067}, isbn = {978-3-902734-36-5}, title = {Peach firmness prediction using optimized regression trees models}, keyword = {Peach firmness prediction, regression trees, global optimization, machine learning, metaheuristics}, publisher = {DAAAM International Vienna}, publisherplace = {Be\v{c}, Austrija; online} }
@article{article, author = {Ivanovski, Tomislav and Zhang, Xiaoshuan and Jemri\'{c}, Tomislav and Guli\'{c}, Marko and Mateti\'{c}, Maja}, editor = {Katalini\'{c}, B.}, year = {2022}, pages = {0480-0489}, DOI = {10.2507/33rd.daaam.proceedings.067}, keywords = {Peach firmness prediction, regression trees, global optimization, machine learning, metaheuristics}, doi = {10.2507/33rd.daaam.proceedings.067}, isbn = {978-3-902734-36-5}, title = {Peach firmness prediction using optimized regression trees models}, keyword = {Peach firmness prediction, regression trees, global optimization, machine learning, metaheuristics}, publisher = {DAAAM International Vienna}, publisherplace = {Be\v{c}, Austrija; online} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font