Pregled bibliografske jedinice broj: 1237061
Using graph databases in source code plagiarism detection
Using graph databases in source code plagiarism detection // Proceedings of Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Guàrdia, Lourdes ; Grd, Petra (ur.).
Varaždin: Faculty of Ogranization and Informatics, 2022. str. 465-470 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1237061 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using graph databases in source code plagiarism detection
Autori
Novak, Matija ; Levak, Iva
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of Central European Conference on Information and Intelligent Systems
/ Vrček, Neven ; Guàrdia, Lourdes ; Grd, Petra - Varaždin : Faculty of Ogranization and Informatics, 2022, 465-470
Skup
Central European Conference on Information and Intelligent Systems
Mjesto i datum
Dubrovnik, Croatia, 23.01.2023
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
plagiarism, graph databases, similarity detection
Sažetak
Modern plagiarism detection tools calculate the percentage of the similarity between two given source code files. In academia, the process of checking for potential plagiarized students solutions can be challenging in terms of resources due to the large number of combinations between many students. In such conditions, the reliability of plagiarism detection tools may be put to risk. Every plagiarism detection tool produces a similarity report as files containing the results of the analysis for each pair of analyzed source code files. While such a report is useful for a one-time checking, sometimes it is needed to store the result data for future use. In our previous work, the results were stored in a relational database and a list of relevant queries was defined for meaningful analysis. Nevertheless, the large number of pair-wise impacts the storage and query execution speeds. In this paper, we present a solution to this problem by importing the similarity analysis data into a graph database and evaluate the difference in the query execution speed between a graph and a relational database.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin,
Sveučilište u Zagrebu