Pregled bibliografske jedinice broj: 1236958
GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment
GWLBC: Gray Wolf Optimization Based Load Balanced Clustering for Sustainable WSNs in Smart City Environment // Sensors, 22 (2022), 19; 7113-7137 doi:10.3390/s22197113 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1236958 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
GWLBC: Gray Wolf Optimization Based Load Balanced
Clustering for Sustainable WSNs in Smart City
Environment
Autori
Surjit, Singh ; Nikolovski, Srete ; Prasun, Chakrabarti ;
Izvornik
Sensors (1424-8220) 22
(2022), 19;
7113-7137
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
improved gray wolf optimization ; clustering ; load balancing ; performance modeling ; sustainable WSNs
Sažetak
N a smart city environment, with increased demand for energy efficiency, information exchange and communication through wireless sensor networks (WSNs) plays an important role. In WSNs, the sensors are usually operating in clusters, and they are allowed to restructure for effective communication over a large area and for a long time. In this scenario, load-balanced clustering is the cost-effective means of improving the system performance. Although clustering is a discrete problem, the computational intelligence techniques are more suitable for load balancing and minimizing energy consumption with different operating constraints. The literature reveals that the swarm intelligence-inspired computational approaches give excellent results among population-based meta-heuristic approaches because of their more remarkable exploration ability. Conversely, in this work, load-balanced clustering for sustainable WSNs is presented using improved gray wolf optimization (IGWO). In a smart city environment, the significant parameters of energy- efficient load-balanced clustering involve the network lifetime, dead cluster heads, dead gateways, dead sensor nodes, and energy consumption while ensuring information exchange and communication among the sensors and cluster heads. Therefore, based on the above parameters, the proposed IGWO is compared with the existing GWO and several other techniques. Moreover, the convergence characteristics of the proposed algorithm are demonstrated for an extensive network in a smart city environment, which consists of 500 sensors and 50 cluster heads deployed in an area of 500 × 500 m2, and it was found to be significantly improved.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek
Profili:
Srete Nikolovski
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE