Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1236649

Dense open-set recognition based on training with noisy negative images


Bevandić, Petra; Krešo, Ivan; Oršić, Marin; Šegvić, Siniša
Dense open-set recognition based on training with noisy negative images // Image and Vision Computing, 124 (2022), 104490, 19 doi:10.1016/j.imavis.2022.104490 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1236649 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Dense open-set recognition based on training with noisy negative images

Autori
Bevandić, Petra ; Krešo, Ivan ; Oršić, Marin ; Šegvić, Siniša

Izvornik
Image and Vision Computing (0262-8856) 124 (2022); 104490, 19

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
dense prediction, semantic segmentation, dense open-set recognition, outlier detection

Sažetak
Deep convolutional models often produce inadequate predictions for inputs which are foreign to the training distribution. Consequently, the problem of detecting outlier images has recently been receiving a lot of attention. Unlike most previous work, we address this problem in the dense prediction context. Our approach is based on two reasonable assumptions. First, we assume that the inlier dataset is related to some narrow application field (e.g. road driving). Second, we assume that there exists a general-purpose dataset which is much more diverse than the inlier dataset (e.g. ImageNet-1k). We consider pixels from the general-purpose dataset as noisy negative samples since most (but not all) of them are outliers. We encourage the model to recognize borders between the known and the unknown by pasting jittered negative patches over inlier training images. Our experiments target two dense open-set recognition benchmarks (WildDash 1 and Fishyscapes) and one dense open-set recognition dataset (StreetHazard). Extensive performance evaluation indicates competitive potential of the proposed approach.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivan Krešo (autor)

Avatar Url Marin Oršić (autor)

Avatar Url Petra Bevandić (autor)

Avatar Url Siniša Šegvić (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org

Citiraj ovu publikaciju:

Bevandić, Petra; Krešo, Ivan; Oršić, Marin; Šegvić, Siniša
Dense open-set recognition based on training with noisy negative images // Image and Vision Computing, 124 (2022), 104490, 19 doi:10.1016/j.imavis.2022.104490 (međunarodna recenzija, članak, znanstveni)
Bevandić, P., Krešo, I., Oršić, M. & Šegvić, S. (2022) Dense open-set recognition based on training with noisy negative images. Image and Vision Computing, 124, 104490, 19 doi:10.1016/j.imavis.2022.104490.
@article{article, author = {Bevandi\'{c}, Petra and Kre\v{s}o, Ivan and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2022}, pages = {19}, DOI = {10.1016/j.imavis.2022.104490}, chapter = {104490}, keywords = {dense prediction, semantic segmentation, dense open-set recognition, outlier detection}, journal = {Image and Vision Computing}, doi = {10.1016/j.imavis.2022.104490}, volume = {124}, issn = {0262-8856}, title = {Dense open-set recognition based on training with noisy negative images}, keyword = {dense prediction, semantic segmentation, dense open-set recognition, outlier detection}, chapternumber = {104490} }
@article{article, author = {Bevandi\'{c}, Petra and Kre\v{s}o, Ivan and Or\v{s}i\'{c}, Marin and \v{S}egvi\'{c}, Sini\v{s}a}, year = {2022}, pages = {19}, DOI = {10.1016/j.imavis.2022.104490}, chapter = {104490}, keywords = {dense prediction, semantic segmentation, dense open-set recognition, outlier detection}, journal = {Image and Vision Computing}, doi = {10.1016/j.imavis.2022.104490}, volume = {124}, issn = {0262-8856}, title = {Dense open-set recognition based on training with noisy negative images}, keyword = {dense prediction, semantic segmentation, dense open-set recognition, outlier detection}, chapternumber = {104490} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font