Pregled bibliografske jedinice broj: 1236649
Dense open-set recognition based on training with noisy negative images
Dense open-set recognition based on training with noisy negative images // Image and Vision Computing, 124 (2022), 104490, 19 doi:10.1016/j.imavis.2022.104490 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1236649 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Dense open-set recognition based on training with noisy negative images
Autori
Bevandić, Petra ; Krešo, Ivan ; Oršić, Marin ; Šegvić, Siniša
Izvornik
Image and Vision Computing (0262-8856) 124
(2022);
104490, 19
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
dense prediction, semantic segmentation, dense open-set recognition, outlier detection
Sažetak
Deep convolutional models often produce inadequate predictions for inputs which are foreign to the training distribution. Consequently, the problem of detecting outlier images has recently been receiving a lot of attention. Unlike most previous work, we address this problem in the dense prediction context. Our approach is based on two reasonable assumptions. First, we assume that the inlier dataset is related to some narrow application field (e.g. road driving). Second, we assume that there exists a general-purpose dataset which is much more diverse than the inlier dataset (e.g. ImageNet-1k). We consider pixels from the general-purpose dataset as noisy negative samples since most (but not all) of them are outliers. We encourage the model to recognize borders between the known and the unknown by pasting jittered negative patches over inlier training images. Our experiments target two dense open-set recognition benchmarks (WildDash 1 and Fishyscapes) and one dense open-set recognition dataset (StreetHazard). Extensive performance evaluation indicates competitive potential of the proposed approach.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus