Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1235463

A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces


Marić, Petar; Arlović, Matej; Balen, Josip; Vdovjak, Krešimir; Damjanović, Davor
A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces // Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
Malé, Maldivi, 2022. str. 1-8 doi:10.1109/ICECCME55909.2022.9987926 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1235463 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces

Autori
Marić, Petar ; Arlović, Matej ; Balen, Josip ; Vdovjak, Krešimir ; Damjanović, Davor

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) / - , 2022, 1-8

Skup
2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)

Mjesto i datum
Malé, Maldivi, 16.11.2022. - 18.11.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Convolutional Neural Networks, Fire Image Dataset, Image Annotation, Image Annotation Tools, Object Detection, Semantic Segmentation

Sažetak
Fire represents a dangerous event, especially in inhabited areas where it can cause extensive economical damage, as well as take human lives, and therefore early fire detection is of utmost importance and requires careful attention. Utilizing images from security cameras and computer vision algorithms, it is possible to detect and raise the alarm in the event of a fire. The existence of similar-colored lights to the flame’s color is the great- est obstacle to indoor fire detection when it comes to computer vision. The lights may trigger false positive detections, resulting in false alarms and potential fire suppression by automated systems. By developing a new fire dataset for the training of deep neural networks, we attempted to circumvent the stated issue. Our dataset includes images of different colored lights, images with reflections of light that resemble the color of fire, and images of fire in a variety of environments, including warehouses, factories, shopping malls, residential buildings, offices, etc. Although there are numerous scientific papers and datasets for fire detection, there are not many datasets containing images of indoor fires. In this paper, we show a process of collecting and annotating images representing indoor fire in a manner suitable for deep neural network training. Furthermore, we present the developed Fire Sense image annotation tool and the process of image annotation. The dataset currently consists of more than 11000 annotated images of various types of fires in different environments.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Marić, Petar; Arlović, Matej; Balen, Josip; Vdovjak, Krešimir; Damjanović, Davor
A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces // Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)
Malé, Maldivi, 2022. str. 1-8 doi:10.1109/ICECCME55909.2022.9987926 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Marić, P., Arlović, M., Balen, J., Vdovjak, K. & Damjanović, D. (2022) A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces. U: Proc. of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) doi:10.1109/ICECCME55909.2022.9987926.
@article{article, author = {Mari\'{c}, Petar and Arlovi\'{c}, Matej and Balen, Josip and Vdovjak, Kre\v{s}imir and Damjanovi\'{c}, Davor}, year = {2022}, pages = {1-8}, DOI = {10.1109/ICECCME55909.2022.9987926}, keywords = {Convolutional Neural Networks, Fire Image Dataset, Image Annotation, Image Annotation Tools, Object Detection, Semantic Segmentation}, doi = {10.1109/ICECCME55909.2022.9987926}, title = {A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces}, keyword = {Convolutional Neural Networks, Fire Image Dataset, Image Annotation, Image Annotation Tools, Object Detection, Semantic Segmentation}, publisherplace = {Mal\'{e}, Maldivi} }
@article{article, author = {Mari\'{c}, Petar and Arlovi\'{c}, Matej and Balen, Josip and Vdovjak, Kre\v{s}imir and Damjanovi\'{c}, Davor}, year = {2022}, pages = {1-8}, DOI = {10.1109/ICECCME55909.2022.9987926}, keywords = {Convolutional Neural Networks, Fire Image Dataset, Image Annotation, Image Annotation Tools, Object Detection, Semantic Segmentation}, doi = {10.1109/ICECCME55909.2022.9987926}, title = {A Large Scale Dataset For Fire Detection and Segmentation in Indoor Spaces}, keyword = {Convolutional Neural Networks, Fire Image Dataset, Image Annotation, Image Annotation Tools, Object Detection, Semantic Segmentation}, publisherplace = {Mal\'{e}, Maldivi} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font