Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1235258

Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms


Kvesić, Marija; Galešić Divić, Morena; Kišević, Mak; Kekez, Toni; Miletić, Marin; Andričević, Roko
Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms // Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV / Neale, Christopher M. U. ; Maltese, Antonino (ur.).
Berlin: SPIE, 2022. 1226214, 12 doi:10.1117/12.2634554 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1235258 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms

Autori
Kvesić, Marija ; Galešić Divić, Morena ; Kišević, Mak ; Kekez, Toni ; Miletić, Marin ; Andričević, Roko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV / Neale, Christopher M. U. ; Maltese, Antonino - Berlin : SPIE, 2022

ISBN
978-151065527-0

Skup
Conference on Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV, Part of SPIE Remote Sensing Conferene

Mjesto i datum
Berlin, Njemačka, 05.09.2022. - 07.09.2022

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
CDOM ; chlorophyll a ; hyperspectral imaging ; Sentinel-2 ; turbidity ; Unmanned aerial vehicle (UAV) ; water quality

Sažetak
Agricultural runoff and municipal sewage generate excessive nutrient input in estuaries, which disturbs the ecosystem's natural balance. Most monitoring programs require in situ measurements, which are expensive, time-consuming, and lack spatial and temporal resolution. Extensive research focuses on mitigating these costs by minimizing the indicators or using remote sensing tools. One of the currently investigated options is the application of unmanned aerial vehicles (UAVs) data since it can narrow the multi- resolution gap between the in situ and satellite data. As an initial step of such a multi-scaling approach, we focused on testing the applicability of existing algorithms developed for the Sentinel- 2 multispectral data (MS) on our hyperspectral (HS) data obtained using UAV. We applied the available algorithms to estimate three water quality (WQ) parameters: Chlorophyll a (Chl a), Colored Dissolved Organic Matter (CDOM), and turbidity (TUR), for the in situ data acquired at the estuary of the River Jadro near the city of Split (Croatia). The higher spectral resolution obtained by HS imaging enabled us to use the specific wavelengths corresponding to the satellite bands for which the initial algorithms were developed. Moreover, we made one synthetic dataset of MS data, obtained by spectral resampling of HS data using spectral response functions for Sentinel 2 sensors given by ESA. By using these corresponding bandwidths, the initial study found medium and poor correlations with the WQ parameters: Chl a (R2=0.48), turbidity (R2=0.07), and CDOM (R2=0.22). Furthermore, all algorithms revealed higher correlations when using HS data compared to synthesized MS data. However, to fortify these results, we need to test more algorithms and compare the results with satellite reflectance data. Moreover, the future goals of this study are to develop new algorithms which could serve as surrogate data for satellite predictions.

Izvorni jezik
Engleski

Znanstvena područja
Interdisciplinarne prirodne znanosti, Građevinarstvo

Napomena
Book Series: Proceedings of SPIE , Volume: 12262



POVEZANOST RADA


Projekti:
--KK.01.1.1.04.0064 - Razvoj tehnologije za procjenu autopurifikacijskih sposobnosti priobalnih voda (CAAT) (Andričević, Roko) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split,
Prirodoslovno-matematički fakultet, Split,
Sveučilište u Splitu

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Kvesić, Marija; Galešić Divić, Morena; Kišević, Mak; Kekez, Toni; Miletić, Marin; Andričević, Roko
Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms // Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV / Neale, Christopher M. U. ; Maltese, Antonino (ur.).
Berlin: SPIE, 2022. 1226214, 12 doi:10.1117/12.2634554 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kvesić, M., Galešić Divić, M., Kišević, M., Kekez, T., Miletić, M. & Andričević, R. (2022) Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms. U: Neale, C. & Maltese, A. (ur.)Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIV doi:10.1117/12.2634554.
@article{article, author = {Kvesi\'{c}, Marija and Gale\v{s}i\'{c} Divi\'{c}, Morena and Ki\v{s}evi\'{c}, Mak and Kekez, Toni and Mileti\'{c}, Marin and Andri\v{c}evi\'{c}, Roko}, year = {2022}, pages = {12}, DOI = {10.1117/12.2634554}, chapter = {1226214}, keywords = {CDOM, chlorophyll a, hyperspectral imaging, Sentinel-2, turbidity, Unmanned aerial vehicle (UAV), water quality}, doi = {10.1117/12.2634554}, isbn = {978-151065527-0}, title = {Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms}, keyword = {CDOM, chlorophyll a, hyperspectral imaging, Sentinel-2, turbidity, Unmanned aerial vehicle (UAV), water quality}, publisher = {SPIE}, publisherplace = {Berlin, Njema\v{c}ka}, chapternumber = {1226214} }
@article{article, author = {Kvesi\'{c}, Marija and Gale\v{s}i\'{c} Divi\'{c}, Morena and Ki\v{s}evi\'{c}, Mak and Kekez, Toni and Mileti\'{c}, Marin and Andri\v{c}evi\'{c}, Roko}, year = {2022}, pages = {12}, DOI = {10.1117/12.2634554}, chapter = {1226214}, keywords = {CDOM, chlorophyll a, hyperspectral imaging, Sentinel-2, turbidity, Unmanned aerial vehicle (UAV), water quality}, doi = {10.1117/12.2634554}, isbn = {978-151065527-0}, title = {Water quality monitoring in an estuary using UAV hyperspectral imaging and satellite algorithms}, keyword = {CDOM, chlorophyll a, hyperspectral imaging, Sentinel-2, turbidity, Unmanned aerial vehicle (UAV), water quality}, publisher = {SPIE}, publisherplace = {Berlin, Njema\v{c}ka}, chapternumber = {1226214} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Conference Proceedings Citation Index - Science (CPCI-S)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font