Pregled bibliografske jedinice broj: 1234622
The Application of Deep Learning for the Evaluation of User Interfaces
The Application of Deep Learning for the Evaluation of User Interfaces // Sensors, 22 (2022), 23; 9336, 17 doi:10.3390/s22239336 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1234622 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The Application of Deep Learning for the Evaluation
of User Interfaces
Autori
Kešelj, Ana ; Milicevic, Mario ; Žubrinic, Krunoslav ; Car, Zeljka
Izvornik
Sensors (1424-8220) 22
(2022), 23;
9336, 17
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
machine learning model ; user interface design ; automatic evaluation ; design analysis ; deep learning
Sažetak
In this study, we tested the ability of a machine- learning model (ML) to evaluate different user interface designs within the defined boundaries of some given software. Our approach used ML to automatically evaluate existing and new web application designs and provide developers and designers with a benchmark for choosing the most user-friendly and effective design. The model is also useful for any other software in which the user has different options to choose from or where choice depends on user knowledge, such as quizzes in e-learning. The model can rank accessible designs and evaluate the accessibility of new designs. We used an ensemble model with a custom multi-channel convolutional neural network (CNN) and an ensemble model with a standard architecture with multiple versions of down-sampled input images and compared the results. We also describe our data preparation process. The results of our research show that ML algorithms can estimate the future performance of completely new user interfaces within the given elements of user interface design, especially for color/contrast and font/layout.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Sveučilište u Dubrovniku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE