Pregled bibliografske jedinice broj: 1233115
Translation Surfaces with Constant Curvatures in 3-dimensional Lorentz-Minkowski Space
Translation Surfaces with Constant Curvatures in 3-dimensional Lorentz-Minkowski Space // 5th Croatian Conference on Geometry and Graphics
Dubrovnik, Hrvatska, 2022. str. 17-18 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1233115 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Translation Surfaces with Constant Curvatures in
3-dimensional
Lorentz-Minkowski Space
Autori
Filipan, Ivana ; Milin Šipuš, Željka ; Primorac Gajčić, Ljiljana
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
5th Croatian Conference on Geometry and Graphics
Mjesto i datum
Dubrovnik, Hrvatska, 04.-08.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
Null-translation surfaces, Minkowski space
Sažetak
Translation surfaces are surfaces generated by two curves moving along each other. In 3-dimensional Lorentz-Minkowski space, which is the smooth manifold R 3 with flat Lorentzian pseudometric, such surfaces can be classified with respect to the causal character of their generating curves (spacelike, timelike or null (lightlike)). In this talk, we analyse translation surfaces with at least one null generating curve, which we refer to as null-translation surfaces. By considering generatrices as graphs of two functions with respect to the axis coordinate, we determine all null-translation surfaces of constant mean curvature and show that the only null-translation surfaces of constant Gaussian curvature are cylindrical surfaces. We also present alternative approach in analysing null-translation surfaces via Frenet frame, respectively null frame, of generatrices of the surface, that provides the explicit parametrization of null-translation surfaces with non-vanishing constant mean curvature.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Rudarsko-geološko-naftni fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku