Pregled bibliografske jedinice broj: 1232899
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D // Croatian-German meeting on analysis and mathematical physics
Online, Dortmund , Njemačka, 2021. str. 14-14 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
CROSBI ID: 1232899 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D
Autori
Muha, Boris
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Skup
Croatian-German meeting on analysis and mathematical physics
Mjesto i datum
Online, Dortmund , Njemačka, 22.-25.03.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Podatak o recenziji nije dostupan
Ključne riječi
incompressible Navier-Stokes equations
Sažetak
We study the unsteady incompressible Navier-Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of non-linear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a-priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (w.r.t. terms of highest order). The estimates are obtained by introducing new analytical tools that allow to exploit dissipative effects of the fluid for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation procedure ; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin-Lions type compactness result suitable for fluid-structure interactions. This is a joint work with S. Schwarzacher.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Boris Muha
(autor)