Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1232899

Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D


Muha, Boris
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D // Croatian-German meeting on analysis and mathematical physics
Online, Dortmund , Njemačka, 2021. str. 14-14 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)


CROSBI ID: 1232899 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D

Autori
Muha, Boris

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Skup
Croatian-German meeting on analysis and mathematical physics

Mjesto i datum
Online, Dortmund , Njemačka, 22.-25.03.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Podatak o recenziji nije dostupan

Ključne riječi
incompressible Navier-Stokes equations

Sažetak
We study the unsteady incompressible Navier-Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of non-linear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a-priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (w.r.t. terms of highest order). The estimates are obtained by introducing new analytical tools that allow to exploit dissipative effects of the fluid for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation procedure ; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin-Lions type compactness result suitable for fluid-structure interactions. This is a joint work with S. Schwarzacher.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Boris Muha (autor)

Citiraj ovu publikaciju:

Muha, Boris
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D // Croatian-German meeting on analysis and mathematical physics
Online, Dortmund , Njemačka, 2021. str. 14-14 (predavanje, podatak o recenziji nije dostupan, sažetak, znanstveni)
Muha, B. (2021) Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D. U: Croatian-German meeting on analysis and mathematical physics.
@article{article, author = {Muha, Boris}, year = {2021}, pages = {14-14}, keywords = {incompressible Navier-Stokes equations}, title = {Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D}, keyword = {incompressible Navier-Stokes equations}, publisherplace = {Online, Dortmund , Njema\v{c}ka} }
@article{article, author = {Muha, Boris}, year = {2021}, pages = {14-14}, keywords = {incompressible Navier-Stokes equations}, title = {Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in 3D}, keyword = {incompressible Navier-Stokes equations}, publisherplace = {Online, Dortmund , Njema\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font