Pregled bibliografske jedinice broj: 1232041
Impact of Connected Vehicles on Learning based Adaptive Traffic Control Systems
Impact of Connected Vehicles on Learning based Adaptive Traffic Control Systems // Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
Prag, Češka Republika: Institute of Electrical and Electronics Engineers (IEEE), 2022. str. 3311-3316 doi:10.1109/smc53654.2022.9945071 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1232041 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Impact of Connected Vehicles on Learning based
Adaptive Traffic Control Systems
Autori
Miletić, Mladen ; Čakija, Dino ; Vrbanić, Filip ; Ivanjko, Edouard
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
/ - : Institute of Electrical and Electronics Engineers (IEEE), 2022, 3311-3316
ISBN
978-166545258-8
Skup
2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
Mjesto i datum
Prag, Češka Republika, 09.10.2022. - 12.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Intelligent Transportation Systems ; Reinforcement Learning ; Connected Vehicles ; Adaptive Traffic Signal Control
Sažetak
Adaptive Traffic Signal Control (ATSC) systems can be implemented to reduce travel times at urban intersections by changing the signal program according to real-time traffic situations. Modern approaches to ATSC are based on Reinforcement Learning (RL) which can allow the controller to learn the control policy independently. By including the concept of Connected Vehicles (CVs), the RL-based ATSC system can use data gathered from CVs instead of traditional traffic sensors. In this paper, the impact of varying CV penetration rate on RL-based ATSC is implemented and evaluated in a simulated environment. Obtained results show that with a sufficient CVs penetration rate the RL-based ATSC systems can significantly reduce the delay of all vehicles in the traffic network.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Tehnologija prometa i transport
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-5042 - Razvoj sustava zasnovanih na učećim agentima za unaprijeđenje upravljanja prometom u gradovima (DLASIUT) (Ivanjko, Edouard, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet prometnih znanosti, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus