Pregled bibliografske jedinice broj: 1231466
Critical Climate Periods Explain a Large Fraction of the Observed Variability in Vegetation State
Critical Climate Periods Explain a Large Fraction of the Observed Variability in Vegetation State // Remote Sensing, 14 (2022), 21; 5621, 27 doi:10.3390/rs14215621 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1231466 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Critical Climate Periods Explain a Large Fraction of the Observed Variability in Vegetation State
Autori
Kern, Anikó ; Barcza, Zoltán ; Hollós, Roland ; Birinyi, Edina ; Marjanović, Hrvoje
Izvornik
Remote Sensing (2072-4292) 14
(2022), 21;
5621, 27
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
remote sensing ; MODIS ; vegetation indices ; meteorology ; soil moisture ; interannual variability
Sažetak
Previous studies have suggested that a major part of the observed variability in vegetation state might be associated with variability in climatic drivers during relatively short periods within the year. Identification of such critical climate periods, when a particular climate variable most likely has a pronounced influence on the vegetation state of a particular ecosystem, becomes increasingly important in the light of climate change. In this study, we present a method to identify critical climate periods for eight different semi-natural ecosystem categories in Hungary, in Central Europe. The analysis was based on the moving-window correlation between MODIS NDVI/LAI and six climate variables with different time lags during the period 2000–2020. Distinct differences between the important climate variables, critical period lengths, and direction (positive or negative correlations) have been found for different ecosystem categories. Multiple linear models for NDVI and LAI were constructed to quantify the multivariate influence of the environmental conditions on the vegetation state during the late summer. For grasslands, the best models for NDVI explained 65–87% variance, while for broad-leaved forests, the highest explained variance for LAI was up to 50%. The proposed method can be easily implemented in other geographical locations and can provide essential insight into the functioning of different ecosystem types.
Izvorni jezik
Engleski
Znanstvena područja
Biologija, Zrakoplovstvo, raketna i svemirska tehnika, Šumarstvo, Biotehnologija, Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Projekti:
IP-2019-04-6325 - Modeliranje šumskih zaliha i tokova ugljika te rizika prema budućim klimatskim scenarijima (MODFLUX) (Marjanović, Hrvoje, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Hrvatski šumarski institut, Jastrebarsko
Profili:
Hrvoje Marjanović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus