Pregled bibliografske jedinice broj: 1230055
Using Convolutional Neural Network for Chest X-ray Image classification
Using Convolutional Neural Network for Chest X-ray Image classification // 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) / Karolj Skala (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020. str. 2101-2106 doi:10.23919/MIPRO48935.2020.9245376 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1230055 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using Convolutional Neural Network for Chest X-ray
Image classification
Autori
Sorić, Matija : Pongrac, Danijela : Inza, Iñaki
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
43rd International Convention on Information, Communication and Electronic Technology (MIPRO)
/ Karolj Skala - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2020, 2101-2106
Skup
43rd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2020)
Mjesto i datum
Opatija, Hrvatska, 28.09.2020. - 02.10.2020
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
convolutional neural network, classification, deep learning, X-ray imaging
Sažetak
Chest X-ray is an imaging technique that plays an important role in pneumonia diagnosis. Owing to the high availability of medically-oriented image datasets, great success can be achieved using convolutional neural networks (CNNs) in the recognition and classification of these images. Since previous research has shown CNNs to perform as well as the best clinicians in diagnostic tasks, they caused great excitement among researchers. In this paper, convolutional neural network (CNN) machine learning (ML) model was built using a supervised dataset. The dataset used contained both pneumonia and nonpneumonia images, which the model had to classify correctly. In the end, the model is demonstrated to have achieved satisfactory results, with the high accuracy of 90.38%, 98.21% recall and 87.84% precision.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti