Pregled bibliografske jedinice broj: 1228156
Nonlinear model predictive control of a microgrid with a variable efficiency battery storage system
Nonlinear model predictive control of a microgrid with a variable efficiency battery storage system // IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
Brisel, Belgija, 2022. str. 1-6 doi:10.1109/IECON49645.2022.9968434 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1228156 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Nonlinear model predictive control of a microgrid
with a variable efficiency battery storage system
Autori
Car, Mateja ; Vašak, Mario ; Hajihosseini, Mojtaba ; Lešić, Vinko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Skup
IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
Mjesto i datum
Brisel, Belgija, 17.10.2022. - 20.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
DC microgrid ; MPC ; energy storage ; variable efficiency ; linearization ; SLP
Sažetak
This paper presents a microgrid energy flow optimization algorithm with variable battery storage efficiency in order to achieve energy savings and expand the lifespan of the components. The converter efficiency curve is deduced from converter's datasheets and approximated with mathematical functions. The power loss on the battery internal resistance is also included in order to achieve a more accurate model of the complete storage system. The obtained nonlinear model is used in model predictive control formulation and solved by using a sequential linear program (SLP) algorithm. The SLP algorithm iteratively linearizes the model around the current solution and uses corresponding efficiencies over the prediction horizon. Simulations in MATLAB are performed for a 7-day period and compared with a conventional, constant- efficiency battery system model. The results show an improved performance regarding the charging and discharging battery power and the overall savings of 7% in comparison with the conventional model used in model predictive control.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb