Pregled bibliografske jedinice broj: 1227467
Supervised and Unsupervised Machine Learning Approaches on Class Imbalanced Data
Supervised and Unsupervised Machine Learning Approaches on Class Imbalanced Data // Proceedings of International Conference on Smart Systems and Technologies (SST 2022) / Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario (ur.).
Osijek: Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022. str. 149-152 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1227467 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Supervised and Unsupervised Machine Learning
Approaches on Class Imbalanced Data
(Supervised and Unsupervised Machine Learning
Approaches on Class Imbalanced Data)
Autori
Ugarković, Alen ; Oreški, Dijana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of International Conference on Smart Systems and Technologies (SST 2022)
/ Nyarko, Emmanuel Karlo ; Matić, Tomislav ; Cupec, Robert ; Vranješ, Mario - Osijek : Fakultet elektrotehnike, računarstva i informacijskih tehnologija Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2022, 149-152
ISBN
978-1-6654-8214-1
Skup
International Conference on Smart Systems and Technologies 2022 (SST 2022)
Mjesto i datum
Osijek, Hrvatska, 19.10.2022. - 21.10.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
class imbalance ; cluster analysis ; decision tree ; machine learning.
Sažetak
Huge amounts of data are stored digitally every day. This data has various characteristics. Class imbalance is one of the characteristics that has the effect of machine learning algorithms performance and this problem is receiving attention among academia and industry. Class imbalance occurs when the number of instances in one class is significantly different than the number of instances in the other class (in binary classification). In this paper, we are combining supervised and unsupervised machine learning approaches on one imbalanced dataset from a publicly available repository. Unsupervised machine learning approach of cluster analysis is applied on the most significant variables discovered by sensitivity analysis on predictive models developed by decision tree. Our results indicated a hybrid approach of decision tree and cluster analysis as a promising tool to work with imbalanced data.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Dijana Oreški
(autor)