Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1227214

Gradient sensing in Bayesian chemotaxis


Auconi, Andrea; Novak, Maja; Friedrich, Benjamin M.
Gradient sensing in Bayesian chemotaxis // Europhysics letters, 138 (2022), 1; 12001-p1 doi:10.1209/0295-5075/ac6620 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1227214 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Gradient sensing in Bayesian chemotaxis

Autori
Auconi, Andrea ; Novak, Maja ; Friedrich, Benjamin M.

Izvornik
Europhysics letters (0295-5075) 138 (2022), 1; 12001-p1

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
chemotaxis, translational diffusion, sequential Bayesian estimation, spatial comparison

Sažetak
Bayesian chemotaxis is an information-based target search problem inspired by biological chemotaxis. It is defined by a decision strategy coupled to the dynamic estimation of target position from detections of signaling molecules. We extend the case of a point-like agent previously introduced (Vergassola et al., Nature (2007)), which establishes concentration sensing as the dominant contribution to information processing, to the case of a circle-shaped agent of small finite size. We identify gradient sensing and a Laplacian correction to concentration sensing as the two leading-order expansion terms in the expected entropy variation. Numerically, we find that the impact of gradient sensing is most relevant because it provides direct directional information to break symmetry in likelihood distributions, which are generally circle shaped by concentration sensing.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Ustanove:
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Maja Novak (autor)

Poveznice na cjeloviti tekst rada:

doi iopscience.iop.org

Citiraj ovu publikaciju:

Auconi, Andrea; Novak, Maja; Friedrich, Benjamin M.
Gradient sensing in Bayesian chemotaxis // Europhysics letters, 138 (2022), 1; 12001-p1 doi:10.1209/0295-5075/ac6620 (međunarodna recenzija, članak, znanstveni)
Auconi, A., Novak, M. & Friedrich, B. (2022) Gradient sensing in Bayesian chemotaxis. Europhysics letters, 138 (1), 12001-p1 doi:10.1209/0295-5075/ac6620.
@article{article, author = {Auconi, Andrea and Novak, Maja and Friedrich, Benjamin M.}, year = {2022}, pages = {12001-p1-12001-p6}, DOI = {10.1209/0295-5075/ac6620}, keywords = {chemotaxis, translational diffusion, sequential Bayesian estimation, spatial comparison}, journal = {Europhysics letters}, doi = {10.1209/0295-5075/ac6620}, volume = {138}, number = {1}, issn = {0295-5075}, title = {Gradient sensing in Bayesian chemotaxis}, keyword = {chemotaxis, translational diffusion, sequential Bayesian estimation, spatial comparison} }
@article{article, author = {Auconi, Andrea and Novak, Maja and Friedrich, Benjamin M.}, year = {2022}, pages = {12001-p1-12001-p6}, DOI = {10.1209/0295-5075/ac6620}, keywords = {chemotaxis, translational diffusion, sequential Bayesian estimation, spatial comparison}, journal = {Europhysics letters}, doi = {10.1209/0295-5075/ac6620}, volume = {138}, number = {1}, issn = {0295-5075}, title = {Gradient sensing in Bayesian chemotaxis}, keyword = {chemotaxis, translational diffusion, sequential Bayesian estimation, spatial comparison} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font