Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1227160

Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models


Jain, Pankaj K; Sharma, Neeraj; Kalra, Mannudeep K; Višković, Klaudija; Saba, Luca; Suri, Jasjit S
Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models // Diagnostics, 12 (2022), 3; 32, 32 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1227160 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models

Autori
Jain, Pankaj K ; Sharma, Neeraj ; Kalra, Mannudeep K ; Višković, Klaudija ; Saba, Luca ; Suri, Jasjit S

Izvornik
Diagnostics (2075-4418) 12 (2022), 3; 32, 32

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
COVID-19 ; Omicron ; chest X-rays ; deep learning ; transfer learning ; convolutional neural network

Sažetak
Background and Motivation: The novel coronavirus causing COVID-19 is exceptionally contagious, highly mutative, decimating human health and life, as well as the global economy, by consistent evolution of new pernicious variants and outbreaks. The reverse transcriptase polymerase chain reaction currently used for diagnosis has major limitations. Furthermore, the multiclass lung classification X-ray systems having viral, bacterial, and tubercular classes-including COVID- 19-are not reliable. Thus, there is a need for a robust, fast, cost-effective, and easily available diagnostic method. Method: Artificial intelligence (AI) has been shown to revolutionize all walks of life, particularly medical imaging. This study proposes a deep learning AI-based automatic multiclass detection and classification of pneumonia from chest X-ray images that are readily available and highly cost-effective. The study has designed and applied seven highly efficient pre- trained convolutional neural networks-namely, VGG16, VGG19, DenseNet201, Xception, InceptionV3, NasnetMobile, and ResNet152-for classification of up to five classes of pneumonia. Results: The database consisted of 18, 603 scans with two, three, and five classes. The best results were using DenseNet201, VGG16, and VGG16, respectively having accuracies of 99.84%, 96.7%, 92.67% ; sensitivity of 99.84%, 96.63%, 92.70% ; specificity of 99.84, 96.63%, 92.41% ; and AUC of 1.0, 0.97, 0.92 (p < 0.0001 for all), respectively. Our system outperformed existing methods by 1.2% for the five-class model. The online system takes <1 s while demonstrating reliability and stability. Conclusions: Deep learning AI is a powerful paradigm for multiclass pneumonia classification.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

www.mdpi.com

Citiraj ovu publikaciju:

Jain, Pankaj K; Sharma, Neeraj; Kalra, Mannudeep K; Višković, Klaudija; Saba, Luca; Suri, Jasjit S
Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models // Diagnostics, 12 (2022), 3; 32, 32 (međunarodna recenzija, članak, znanstveni)
Jain, P., Sharma, N., Kalra, M., Višković, K., Saba, L. & Suri, J. (2022) Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models. Diagnostics, 12 (3), 32, 32.
@article{article, author = {Jain, Pankaj K and Sharma, Neeraj and Kalra, Mannudeep K and Vi\v{s}kovi\'{c}, Klaudija and Saba, Luca and Suri, Jasjit S}, year = {2022}, pages = {32}, chapter = {32}, keywords = {COVID-19, Omicron, chest X-rays, deep learning, transfer learning, convolutional neural network}, journal = {Diagnostics}, volume = {12}, number = {3}, issn = {2075-4418}, title = {Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models}, keyword = {COVID-19, Omicron, chest X-rays, deep learning, transfer learning, convolutional neural network}, chapternumber = {32} }
@article{article, author = {Jain, Pankaj K and Sharma, Neeraj and Kalra, Mannudeep K and Vi\v{s}kovi\'{c}, Klaudija and Saba, Luca and Suri, Jasjit S}, year = {2022}, pages = {32}, chapter = {32}, keywords = {COVID-19, Omicron, chest X-rays, deep learning, transfer learning, convolutional neural network}, journal = {Diagnostics}, volume = {12}, number = {3}, issn = {2075-4418}, title = {Four Types of Multiclass Frameworks for Pneumonia Classification and Its Validation in X-ray Scans Using Seven Types of Deep Learning Artificial Intelligence Models}, keyword = {COVID-19, Omicron, chest X-rays, deep learning, transfer learning, convolutional neural network}, chapternumber = {32} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font