Pregled bibliografske jedinice broj: 1226993
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep Learning System for COVID-19 Lesion Localization in Computed Tomography Scans // Diagnostics, 12 (2022), 6; 40, 40 doi:10.3390/diagnostics12061482 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1226993 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
COVLIAS 2.0-cXAI: Cloud-Based Explainable Deep
Learning System for COVID-19 Lesion Localization
in Computed Tomography Scans
Autori
Suri, Jasjit S. ; Agarwal, Sushant ; Chabert, Gian Luca ; Carriero, Alessandro ; Paschè, Alessio ; Danna, Pietro S. C. ; Saba, Luca ; Mehmedović, Armin ; Faa, Gavino ; Singh, Inder M. ; Turk, Monika ; Chadha, Paramjit S. ; Johri, Amer M. ; Khanna, Narendra N. ; Mavrogeni, Sophie ; Laird, John R. ; Pareek, Gyan ; Miner, Martin ; Sobel, David W. ; Balestrieri, Antonella ; Sfikakis, Petros P. ; Tsoulfas, George ; Protogerou, Athanasios D. ; Misra, Durga Prasanna ; Agarwal, Vikas ; Kitas, George D. ; Teji, Jagjit S. ; Al- Maini, Mustafa ; Dhanjil, Surinder K. ; Nicolaides, Andrew ; Sharma, Aditya ; Rathore, Vijay ; Fatemi, Mostafa ; Alizad, Azra ; Krishnan, Pudukode R. ; Nagy, Ferenc ; Ruzsa, Zoltan ; Fouda, Mostafa M. ; Naidu, Subbaram ; Višković, Klaudija ; Kalra, Mannudeep K.
Izvornik
Diagnostics (2075-4418) 12
(2022), 6;
40, 40
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
COVID-19 lesion ; lung CT ; Hounsfield units ; glass ground opacities ; hybrid deep learning ; explainable AI ; segmentation ; classification ; GRAD-CAM ; Grad-CAM++ ; Score-CAM ; FasterScore-CAM
Sažetak
Background: The previous COVID-19 lung diagnosis system lacks both scientific validation and the role of explainable artificial intelligence (AI) for understanding lesion localization. This study presents a cloud-based explainable AI, the “COVLIAS 2.0-cXAI” system using four kinds of class activation maps (CAM) models. Methodology: Our cohort consisted of ~6000 CT slices from two sources (Croatia, 80 COVID-19 patients and Italy, 15 control patients). COVLIAS 2.0-cXAI design consisted of three stages: (i) automated lung segmentation using hybrid deep learning ResNet- UNet model by automatic adjustment of Hounsfield units, hyperparameter optimization, and parallel and distributed training, (ii) classification using three kinds of DenseNet (DN) models (DN-121, DN-169, DN-201), and (iii) validation using four kinds of CAM visualization techniques: gradient- weighted class activation mapping (Grad-CAM), Grad-CAM++, score-weighted CAM (Score-CAM), and FasterScore-CAM. The COVLIAS 2.0-cXAI was validated by three trained senior radiologists for its stability and reliability. The Friedman test was also performed on the scores of the three radiologists. Results: The ResNet-UNet segmentation model resulted in dice similarity of 0.96, Jaccard index of 0.93, a correlation coefficient of 0.99, with a figure-of-merit of 95.99%, while the classifier accuracies for the three DN nets (DN-121, DN-169, and DN-201) were 98%, 98%, and 99% with a loss of ~0.003, ~0.0025, and ~0.002 using 50 epochs, respectively. The mean AUC for all three DN models was 0.99 (p < 0.0001). The COVLIAS 2.0-cXAI showed 80% scans for mean alignment index (MAI) between heatmaps and gold standard, a score of four out of five, establishing the system for clinical settings. Conclusions: The COVLIAS 2.0-cXAI successfully showed a cloud-based explainable AI system for lesion localization in lung CT scans.
Izvorni jezik
Engleski
Znanstvena područja
Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci
Profili:
Klaudija Višković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus