Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1226990

COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans


Suri, Jasjit S.; Agarwal, Sushant; Chabert, Gian Luca; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro S. C.; Saba, Luca; Mehmedović, Armin; Faa, Gavino; Singh, Inder M. et al.
COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans // Diagnostics, 12 (2022), 5; 34, 34 doi:10.3390/diagnostics12051283 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1226990 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans

Autori
Suri, Jasjit S. ; Agarwal, Sushant ; Chabert, Gian Luca ; Carriero, Alessandro ; Paschè, Alessio ; Danna, Pietro S. C. ; Saba, Luca ; Mehmedović, Armin ; Faa, Gavino ; Singh, Inder M. ; Turk, Monika ; Chadha, Paramjit S. ; Johri, Amer M. ; Khanna, Narendra N. ; Mavrogeni, Sophie ; Laird, John R. ; Pareek, Gyan ; Miner, Martin ; Sobel, David W. ; Balestrieri, Antonella ; Sfikakis, Petros P. ; Tsoulfas, George ; Protogerou, Athanasios D. ; Misra, Durga Prasanna ; Agarwal, Vikas ; Kitas, George D. ; Teji, Jagjit S. ; Al- Maini, Mustafa ; Dhanjil, Surinder K. ; Nicolaides, Andrew ; Sharma, Aditya ; Rathore, Vijay ; Fatemi, Mostafa ; Alizad, Azra ; Krishnan, Pudukode R. ; Nagy, Ferenc ; Ruzsa, Zoltan ; Fouda, Mostafa M. ; Naidu, Subbaram ; Višković, Klaudija ; Kalra, Manudeep K.

Izvornik
Diagnostics (2075-4418) 12 (2022), 5; 34, 34

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
COVID-19 ; computed tomography ; COVID lesions ; ground-glass opacities ; segmentation ; hybrid deep learning

Sažetak
Background: COVID-19 is a disease with multiple variants, and is quickly spreading throughout the world. It is crucial to identify patients who are suspected of having COVID-19 early, because the vaccine is not readily available in certain parts of the world. Methodology: Lung computed tomography (CT) imaging can be used to diagnose COVID-19 as an alternative to the RT-PCR test in some cases. The occurrence of ground-glass opacities in the lung region is a characteristic of COVID-19 in chest CT scans, and these are daunting to locate and segment manually. The proposed study consists of a combination of solo deep learning (DL) and hybrid DL (HDL) models to tackle the lesion location and segmentation more quickly. One DL and four HDL models—namely, PSPNet, VGG-SegNet, ResNet-SegNet, VGG-UNet, and ResNet-UNet—were trained by an expert radiologist. The training scheme adopted a fivefold cross- validation strategy on a cohort of 3000 images selected from a set of 40 COVID-19-positive individuals. Results: The proposed variability study uses tracings from two trained radiologists as part of the validation. Five artificial intelligence (AI) models were benchmarked against MedSeg. The best AI model, ResNet-UNet, was superior to MedSeg by 9% and 15% for Dice and Jaccard, respectively, when compared against MD 1, and by 4% and 8%, respectively, when compared against MD 2. Statistical tests—namely, the Mann– Whitney test, paired t-test, and Wilcoxon test— demonstrated its stability and reliability, with p < 0.0001. The online system for each slice was <1 s. Conclusions: The AI models reliably located and segmented COVID-19 lesions in CT scans. The COVLIAS 1.0Lesion lesion locator passed the intervariability test.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Suri, Jasjit S.; Agarwal, Sushant; Chabert, Gian Luca; Carriero, Alessandro; Paschè, Alessio; Danna, Pietro S. C.; Saba, Luca; Mehmedović, Armin; Faa, Gavino; Singh, Inder M. et al.
COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans // Diagnostics, 12 (2022), 5; 34, 34 doi:10.3390/diagnostics12051283 (međunarodna recenzija, članak, znanstveni)
Suri, J., Agarwal, S., Chabert, G., Carriero, A., Paschè, A., Danna, P., Saba, L., Mehmedović, A., Faa, G. & Singh, I. (2022) COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans. Diagnostics, 12 (5), 34, 34 doi:10.3390/diagnostics12051283.
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Chabert, Gian Luca and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro S. C. and Saba, Luca and Mehmedovi\'{c}, Armin and Faa, Gavino and Singh, Inder M. and Turk, Monika and Chadha, Paramjit S. and Johri, Amer M. and Khanna, Narendra N. and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Sobel, David W. and Balestrieri, Antonella and Sfikakis, Petros P. and Tsoulfas, George and Protogerou, Athanasios D. and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D. and Teji, Jagjit S. and Al- Maini, Mustafa and Dhanjil, Surinder K. and Nicolaides, Andrew and Sharma, Aditya and Rathore, Vijay and Fatemi, Mostafa and Alizad, Azra and Krishnan, Pudukode R. and Nagy, Ferenc and Ruzsa, Zoltan and Fouda, Mostafa M. and Naidu, Subbaram and Vi\v{s}kovi\'{c}, Klaudija and Kalra, Manudeep K.}, year = {2022}, pages = {34}, DOI = {10.3390/diagnostics12051283}, chapter = {34}, keywords = {COVID-19, computed tomography, COVID lesions, ground-glass opacities, segmentation, hybrid deep learning}, journal = {Diagnostics}, doi = {10.3390/diagnostics12051283}, volume = {12}, number = {5}, issn = {2075-4418}, title = {COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans}, keyword = {COVID-19, computed tomography, COVID lesions, ground-glass opacities, segmentation, hybrid deep learning}, chapternumber = {34} }
@article{article, author = {Suri, Jasjit S. and Agarwal, Sushant and Chabert, Gian Luca and Carriero, Alessandro and Pasch\`{e}, Alessio and Danna, Pietro S. C. and Saba, Luca and Mehmedovi\'{c}, Armin and Faa, Gavino and Singh, Inder M. and Turk, Monika and Chadha, Paramjit S. and Johri, Amer M. and Khanna, Narendra N. and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Sobel, David W. and Balestrieri, Antonella and Sfikakis, Petros P. and Tsoulfas, George and Protogerou, Athanasios D. and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D. and Teji, Jagjit S. and Al- Maini, Mustafa and Dhanjil, Surinder K. and Nicolaides, Andrew and Sharma, Aditya and Rathore, Vijay and Fatemi, Mostafa and Alizad, Azra and Krishnan, Pudukode R. and Nagy, Ferenc and Ruzsa, Zoltan and Fouda, Mostafa M. and Naidu, Subbaram and Vi\v{s}kovi\'{c}, Klaudija and Kalra, Manudeep K.}, year = {2022}, pages = {34}, DOI = {10.3390/diagnostics12051283}, chapter = {34}, keywords = {COVID-19, computed tomography, COVID lesions, ground-glass opacities, segmentation, hybrid deep learning}, journal = {Diagnostics}, doi = {10.3390/diagnostics12051283}, volume = {12}, number = {5}, issn = {2075-4418}, title = {COVLIAS 1.0Lesion vs. MedSeg: An Artificial Intelligence Framework for Automated Lesion Segmentation in COVID-19 Lung Computed Tomography Scans}, keyword = {COVID-19, computed tomography, COVID lesions, ground-glass opacities, segmentation, hybrid deep learning}, chapternumber = {34} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font