Pregled bibliografske jedinice broj: 1226890
Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data
Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data // International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022" / Petrović, Marjana ; Dovbischuk, Irina ; Cunha, André Luiz (ur.).
Šibenik, Hrvatska: Elsevier, 2022. str. 166-173 doi:10.1016/j.trpro.2022.09.020 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1226890 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Trajectory Estimation From Sparse Cellular Network
Data Based on the Historical Vehicular Data
Autori
Mardešić, Nikola ; Erdelić, Tomislav ; Tišljarić, Leo ; Carić, Tonči
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022"
/ Petrović, Marjana ; Dovbischuk, Irina ; Cunha, André Luiz - : Elsevier, 2022, 166-173
Skup
International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” (ZIRP 2022)
Mjesto i datum
Šibenik, Hrvatska, 28.09.2022. - 30.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
FCD ; big data ; traffic data analysis ; trajectory estimation
Sažetak
By coupling data-mining techniques with historical cellular and vehicular data, it is possible to find a certain spatiotemporal logic in the observed data. The primary motivation for combining multiple data sources derives from the fact that origin-destination matrices, extracted from cellular data sets, represent only the route's start and end-point without the information about the complete trajectory. This paper proposes a method to estimate sparse cellular data trajectories by reconstructing possible paths from the historical vehicular data. The possible routes are generated by solving the shortest-path problems for given origin- destination pair. A spatiotemporal similarity value is computed to evaluate the paths relative to the ground-truth origin-destination pair. In the end, the path with the highest similarity value is selected. Three criteria for the computation of the spatiotemporal similarity are used: length-based, modified length-based and time-based. The results show the application of proposed methods on the collected historical data, with average percentage similarity ranging from 39.85% to 56.11% (depending on the transport mode and criteria used) with modified-length criteria producing the best results - in some cases producing a trajectory with 98% similarity to the actual cellular trajectory.
Izvorni jezik
Engleski
Znanstvena područja
Tehnologija prometa i transport
Napomena
Transportation Research Procedia Volume 64, Issue C
POVEZANOST RADA
Ustanove:
Fakultet prometnih znanosti, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.sciencedirect.com www.researchgate.netCitiraj ovu publikaciju:
Časopis indeksira:
- Scopus