Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1226890

Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data


Mardešić, Nikola; Erdelić, Tomislav; Tišljarić, Leo; Carić, Tonči
Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data // International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022" / Petrović, Marjana ; Dovbischuk, Irina ; Cunha, André Luiz (ur.).
Šibenik, Hrvatska: Elsevier, 2022. str. 166-173 doi:10.1016/j.trpro.2022.09.020 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1226890 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data

Autori
Mardešić, Nikola ; Erdelić, Tomislav ; Tišljarić, Leo ; Carić, Tonči

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022" / Petrović, Marjana ; Dovbischuk, Irina ; Cunha, André Luiz - : Elsevier, 2022, 166-173

Skup
International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” (ZIRP 2022)

Mjesto i datum
Šibenik, Hrvatska, 28.09.2022. - 30.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
FCD ; big data ; traffic data analysis ; trajectory estimation

Sažetak
By coupling data-mining techniques with historical cellular and vehicular data, it is possible to find a certain spatiotemporal logic in the observed data. The primary motivation for combining multiple data sources derives from the fact that origin-destination matrices, extracted from cellular data sets, represent only the route's start and end-point without the information about the complete trajectory. This paper proposes a method to estimate sparse cellular data trajectories by reconstructing possible paths from the historical vehicular data. The possible routes are generated by solving the shortest-path problems for given origin- destination pair. A spatiotemporal similarity value is computed to evaluate the paths relative to the ground-truth origin-destination pair. In the end, the path with the highest similarity value is selected. Three criteria for the computation of the spatiotemporal similarity are used: length-based, modified length-based and time-based. The results show the application of proposed methods on the collected historical data, with average percentage similarity ranging from 39.85% to 56.11% (depending on the transport mode and criteria used) with modified-length criteria producing the best results - in some cases producing a trajectory with 98% similarity to the actual cellular trajectory.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport

Napomena
Transportation Research Procedia Volume 64, Issue C



POVEZANOST RADA


Projekti:

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Tomislav Erdelić (autor)

Avatar Url Leo Tišljarić (autor)

Avatar Url Tonči Carić (autor)

Citiraj ovu publikaciju:

Mardešić, Nikola; Erdelić, Tomislav; Tišljarić, Leo; Carić, Tonči
Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data // International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022" / Petrović, Marjana ; Dovbischuk, Irina ; Cunha, André Luiz (ur.).
Šibenik, Hrvatska: Elsevier, 2022. str. 166-173 doi:10.1016/j.trpro.2022.09.020 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Mardešić, N., Erdelić, T., Tišljarić, L. & Carić, T. (2022) Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data. U: Petrović, M., Dovbischuk, I. & Cunha, A. (ur.)International Scientific Conference "The Science and Development of Transport - Znanost i razvitak prometa - ZIRP 2022" doi:10.1016/j.trpro.2022.09.020.
@article{article, author = {Marde\v{s}i\'{c}, Nikola and Erdeli\'{c}, Tomislav and Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i}, year = {2022}, pages = {166-173}, DOI = {10.1016/j.trpro.2022.09.020}, keywords = {FCD, big data, traffic data analysis, trajectory estimation}, doi = {10.1016/j.trpro.2022.09.020}, title = {Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data}, keyword = {FCD, big data, traffic data analysis, trajectory estimation}, publisher = {Elsevier}, publisherplace = {\v{S}ibenik, Hrvatska} }
@article{article, author = {Marde\v{s}i\'{c}, Nikola and Erdeli\'{c}, Tomislav and Ti\v{s}ljari\'{c}, Leo and Cari\'{c}, Ton\v{c}i}, year = {2022}, pages = {166-173}, DOI = {10.1016/j.trpro.2022.09.020}, keywords = {FCD, big data, traffic data analysis, trajectory estimation}, doi = {10.1016/j.trpro.2022.09.020}, title = {Trajectory Estimation From Sparse Cellular Network Data Based on the Historical Vehicular Data}, keyword = {FCD, big data, traffic data analysis, trajectory estimation}, publisher = {Elsevier}, publisherplace = {\v{S}ibenik, Hrvatska} }

Časopis indeksira:


  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font