Pregled bibliografske jedinice broj: 1226745
Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0
Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0 // Computers in Biology and Medicine, 146 (2022), 34, 34 doi:10.1016/j.compbiomed.2022.105571 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1226745 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Eight pruning deep learning models for low storage
and high-speed COVID-19 computed tomography lung
segmentation and heatmap-based lesion
localization: A multicenter study using COVLIAS
2.0
Autori
Agarwal, Mohit ; Agarwal, Sushant ; Saba, Luca ; Chabert, Gian Luca ; Gupta, Suneet ; Carriero, Alessandro ; Pasche, Alessio ; Danna, Pietro ; Mehmedovic, Armin ; Faa, Gavino ; Shrivastava, Saurabh ; Jain, Kanishka ; Jain, Harsh ; Jujaray, Tanay ; Singh, Inder M. ; Turk, Monika ; Chadha, Paramjit S. ; Johri, Amer M. ; Khanna, Narendra N. ; Mavrogeni, Sophie ; Laird, John R. ; Sobel, David W. ; Miner, Martin ; Balestrieri, Antonella ; Sfikakis, Petros P. ; Tsoulfas, George ; Misra, Durga Prasanna ; Agarwal, Vikas ; Kitas, George D. ; Teji, Jagjit S. ; Al-Maini, Mustafa ; Dhanjil, Surinder K. ; Nicolaides, Andrew ; Sharma, Aditya ; Rathore, Vijay ; Fatemi, Mostafa ; Alizad, Azra ; Krishnan, Pudukode R. ; Yadav, Rajanikant R. ; Nagy, Frence ; Kincses, Zsigmond Tamás ; Ruzsa, Zoltan ; Naidu, Subbaram ; Višković, Klaudija ; Kalra, Manudeep K. ; Suri, Jasjit S.
Izvornik
Computers in Biology and Medicine (0010-4825) 146
(2022);
34, 34
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
AI ; COVID-19 ; Deep learning ; Glass ground opacities ; Hounsfield units ; Lung CT ; Lung segmentation ; Pruning
Sažetak
Background: COVLIAS 1.0: an automated lung segmentation was designed for COVID-19 diagnosis. It has issues related to storage space and speed. This study shows that COVLIAS 2.0 uses pruned AI (PAI) networks for improving both storage and speed, wiliest high performance on lung segmentation and lesion localization. Method: ology: The proposed study uses multicenter ∼9, 000 CT slices from two different nations, namely, CroMed from Croatia (80 patients, experimental data), and NovMed from Italy (72 patients, validation data). We hypothesize that by using pruning and evolutionary optimization algorithms, the size of the AI models can be reduced significantly, ensuring optimal performance. Eight different pruning techniques (i) differential evolution (DE), (ii) genetic algorithm (GA), (iii) particle swarm optimization algorithm (PSO), and (iv) whale optimization algorithm (WO) in two deep learning frameworks (i) Fully connected network (FCN) and (ii) SegNet were designed. COVLIAS 2.0 was validated using "Unseen NovMed" and benchmarked against MedSeg. Statistical tests for stability and reliability were also conducted. Results: Pruning algorithms (i) FCN-DE, (ii) FCN- GA, (iii) FCN-PSO, and (iv) FCN-WO showed improvement in storage by 92.4%, 95.3%, 98.7%, and 99.8% respectively when compared against solo FCN, and (v) SegNet-DE, (vi) SegNet-GA, (vii) SegNet- PSO, and (viii) SegNet-WO showed improvement by 97.1%, 97.9%, 98.8%, and 99.2% respectively when compared against solo SegNet. AUC > 0.94 (p < 0.0001) on CroMed and > 0.86 (p < 0.0001) on NovMed data set for all eight EA model. PAI <0.25 s per image. DenseNet-121-based Grad-CAM heatmaps showed validation on glass ground opacity lesions. Conclusions: Eight PAI networks that were successfully validated are five times faster, storage efficient, and could be used in clinical settings.
Izvorni jezik
Engleski
Znanstvena područja
Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci
Profili:
Klaudija Višković
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE