Pregled bibliografske jedinice broj: 1225257
Individual Olive Tree Detection in RGB Images
Individual Olive Tree Detection in RGB Images // SoftCOM 2022: 30th International Conference on Software, Telecommunications and Computer Networks: Proceedings / Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko (ur.).
Split: Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2022. str. 1-6 doi:10.23919/SoftCOM55329.2022.9911397 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1225257 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Individual Olive Tree Detection in RGB Images
Autori
Marin, Ivana ; Gotovac, Sven ; Papić, Vladan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
SoftCOM 2022: 30th International Conference on Software, Telecommunications and Computer Networks: Proceedings
/ Begušić, Dinko ; Rožić, Nikola ; Radić, Joško ; Šarić, Matko - Split : Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu, 2022, 1-6
ISBN
978-953-290-117-7
Skup
30th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2022
Mjesto i datum
Split, Hrvatska, 22.09.2022. - 24.09.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Tree crowns ; Tree detection ; Remote sensing ; Deep learning
Sažetak
In this paper, an automatic method for detecting and counting olive trees in RGB images acquired by an unmanned aerial vehicle (UAV) is developed. Our approach is based on implementation of RetinaNet model and DeepForest Phyton package. For improvement of pretrained model via transfer learning, five olive groves were mapped using UAV, trees were manually labeled, and new image dataset was created. Several models were built, each being trained and evaluated on different set of images from selected olive groves. Experimental results obtained on a UAV image acquired over test olive groves are reported and discussed. Detection results showed high reliability of proposed approach and great improvement in performance compared to pretrained model.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split,
Prirodoslovno-matematički fakultet, Split
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus