Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1222837

Methodology for public transport mode detection using telecom big data sets: case study in Croatia


Vidović, Krešimir; Čolić, Petar; Vojvodić, Saša; Blavicki, Anamarija
Methodology for public transport mode detection using telecom big data sets: case study in Croatia // International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” / Petrovic, Marjana ; Dovbischuk, Irina ; Luiz Cunha, André (ur.).
Šibenik, Hrvatska: Elsevier, 2022. str. 76-83 doi:10.1016/j.trpro.2022.09.010 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1222837 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Methodology for public transport mode detection using telecom big data sets: case study in Croatia

Autori
Vidović, Krešimir ; Čolić, Petar ; Vojvodić, Saša ; Blavicki, Anamarija

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” / Petrovic, Marjana ; Dovbischuk, Irina ; Luiz Cunha, André - : Elsevier, 2022, 76-83

Skup
International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” (ZIRP 2022)

Mjesto i datum
Šibenik, Hrvatska, 28.09.2022. - 30.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
telecom big data, data science, public transport utilisation, modal split

Sažetak
Determining the number of passengers using public transport services is a challenging and time- consuming task that relies either on manual observations (e.g. manual counting passengers in vehicles or at stations) or the application of technical solutions (using data from automatic fare collection system (AFC) or automatic passenger counters (APC), which is characterized either by the provision of an incomplete picture (AFC) or by a solution which in practice is installed in a small number of vehicles if any (APC). The new approach which uses anonymized telecom-originated big data sets and data science principles can be used as a smart data driven approach for determining the use of public transport. Anonymized telecom big data sets represent “digital breadcrumbs” that people leave while moving through the city. When paired with additional data sets (e.g. public transport timetables, location of public transport stations, information on public transport lines, etc.), it can be used for modal split detection. In this paper, a new methodological approach is proposed that uses anonymized telecom big data sets and a statistical modelling approach to identify possible public transport trips among all other trips. This methodology has been tested in a case study in the City of Rijeka and validated using ground truth data obtained from traditional sources.

Izvorni jezik
Engleski

Znanstvena područja
Tehnologija prometa i transport



POVEZANOST RADA


Ustanove:
Ericsson Nikola Tesla d.d.,
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Saša Vojvodić (autor)

Avatar Url Petar Colić (autor)

Avatar Url Krešimir Vidović (autor)

Citiraj ovu publikaciju:

Vidović, Krešimir; Čolić, Petar; Vojvodić, Saša; Blavicki, Anamarija
Methodology for public transport mode detection using telecom big data sets: case study in Croatia // International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” / Petrovic, Marjana ; Dovbischuk, Irina ; Luiz Cunha, André (ur.).
Šibenik, Hrvatska: Elsevier, 2022. str. 76-83 doi:10.1016/j.trpro.2022.09.010 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vidović, K., Čolić, P., Vojvodić, S. & Blavicki, A. (2022) Methodology for public transport mode detection using telecom big data sets: case study in Croatia. U: Petrovic, M., Dovbischuk, I. & Luiz Cunha, A. (ur.)International Scientific Conference “The Science and Development of Transport - Znanost i razvitak prometa” doi:10.1016/j.trpro.2022.09.010.
@article{article, author = {Vidovi\'{c}, Kre\v{s}imir and \v{C}oli\'{c}, Petar and Vojvodi\'{c}, Sa\v{s}a and Blavicki, Anamarija}, year = {2022}, pages = {76-83}, DOI = {10.1016/j.trpro.2022.09.010}, keywords = {telecom big data, data science, public transport utilisation, modal split}, doi = {10.1016/j.trpro.2022.09.010}, title = {Methodology for public transport mode detection using telecom big data sets: case study in Croatia}, keyword = {telecom big data, data science, public transport utilisation, modal split}, publisher = {Elsevier}, publisherplace = {\v{S}ibenik, Hrvatska} }
@article{article, author = {Vidovi\'{c}, Kre\v{s}imir and \v{C}oli\'{c}, Petar and Vojvodi\'{c}, Sa\v{s}a and Blavicki, Anamarija}, year = {2022}, pages = {76-83}, DOI = {10.1016/j.trpro.2022.09.010}, keywords = {telecom big data, data science, public transport utilisation, modal split}, doi = {10.1016/j.trpro.2022.09.010}, title = {Methodology for public transport mode detection using telecom big data sets: case study in Croatia}, keyword = {telecom big data, data science, public transport utilisation, modal split}, publisher = {Elsevier}, publisherplace = {\v{S}ibenik, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font