Pregled bibliografske jedinice broj: 1221653
Fractal analysis of degenerate spiral trajectories of a class of ordinary differential equations
Fractal analysis of degenerate spiral trajectories of a class of ordinary differential equations // Applied Mathematics and Computation, 438 (2023), 127569, 15 doi:10.1016/j.amc.2022.127569 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1221653 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Fractal analysis of degenerate spiral trajectories of a class of ordinary differential equations
Autori
Huzak, Renato ; Vlah, Domagoj ; Žubrinić, Darko ; Županović, Vesna
Izvornik
Applied Mathematics and Computation (0096-3003) 438
(2023);
127569, 15
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Box dimension (Minkowski dimension) ; Degenerate spiral trajectories ; Geometric chirps ; Turning points
Sažetak
In this paper we initiate the study of the Minkowski dimension, also called the box dimension, of degenerate spiral trajectories of a class of ordinary differential equations. A class of singularities of focus type with two zero eigenvalues (nilpotent or more degenerate) has been studied. We find the box dimension of a polynomial degenerate focus of type $(n, n)$ by exploiting the well-known fractal results for $\alpha$-power spirals. In the general $(m, n)$ case, we formulate a conjecture about the box dimension of a degenerate focus using numerical experiments. Further, we reduce the fractal analysis of planar nilpotent contact points to the study of the box dimension of a slow-fast spiral generated by their ``entry-exit" function. There exists a bijective correspondence between the box dimension of the slow-fast spirals and the codimension of contact points. We also construct a three-dimensional vector field that contains a degenerate spiral, called an elliptical power spiral, as a trajectory.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus