Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1221625

Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle


Oreški, Dijana
Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle // Proceedings of the Thirteenth International Conference on e-Learning / Raspopović Milić, Miroslava (ur.).
Beograd: Metropolitan University, 2022. str. 18-24 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1221625 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle

Autori
Oreški, Dijana

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the Thirteenth International Conference on e-Learning / Raspopović Milić, Miroslava - Beograd : Metropolitan University, 2022, 18-24

Skup
The Thirteenth International Conference on e- Learning

Mjesto i datum
Beograd, Srbija, 29.09.2022. - 30.09.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Learning analytics ; educational data mining ; LMS data ; machine learning.

Sažetak
Learning analytics is a data-centric field that applies machine learning algorithms in the educational domain to analyze e-Learning environment data. This study employs descriptive and predictive learning analytics approaches in order to develop descriptive and predictive models of student behavior and success. Cluster analysis, unsupervised machine learning algorithm, and decision tree, supervised machine learning algorithm, are applied on the data from a Learning Management System (LMS) Moodle. Research results indicated: (i) groups of students with similar patterns in behavior at LMS, (ii) student activities at LMS that lead to successful course completion. Such results serve as guidelines for teachers when developing courses and students when enrolling in the course. Descriptive and predictive learning analytics is an innovative approach in education that can enhance teachers and students and improve learning outcomes.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Dijana Oreški (autor)


Citiraj ovu publikaciju:

Oreški, Dijana
Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle // Proceedings of the Thirteenth International Conference on e-Learning / Raspopović Milić, Miroslava (ur.).
Beograd: Metropolitan University, 2022. str. 18-24 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Oreški, D. (2022) Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle. U: Raspopović Milić, M. (ur.)Proceedings of the Thirteenth International Conference on e-Learning.
@article{article, author = {Ore\v{s}ki, Dijana}, editor = {Raspopovi\'{c} Mili\'{c}, M.}, year = {2022}, pages = {18-24}, keywords = {Learning analytics, educational data mining, LMS data, machine learning.}, title = {Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle}, keyword = {Learning analytics, educational data mining, LMS data, machine learning.}, publisher = {Metropolitan University}, publisherplace = {Beograd, Srbija} }
@article{article, author = {Ore\v{s}ki, Dijana}, editor = {Raspopovi\'{c} Mili\'{c}, M.}, year = {2022}, pages = {18-24}, keywords = {Learning analytics, educational data mining, LMS data, machine learning.}, title = {Using descriptive and predictive learning analytics to understand student behavior at LMS Moodle}, keyword = {Learning analytics, educational data mining, LMS data, machine learning.}, publisher = {Metropolitan University}, publisherplace = {Beograd, Srbija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font