Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1221457

Bounds for confluent Horn function Phi_2 deduced by McKay I_nu Bessel law


Jankov Maširević, Dragana; Poganj, Tibor
Bounds for confluent Horn function Phi_2 deduced by McKay I_nu Bessel law // Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti (2022) (znanstveni, prihvaćen)


CROSBI ID: 1221457 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Bounds for confluent Horn function Phi_2 deduced by McKay I_nu Bessel law

Autori
Jankov Maširević, Dragana ; Poganj, Tibor

Vrsta, podvrsta
Radovi u časopisima, znanstveni

Izvornik
Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti (2022)

Status rada
Prihvaćen

Ključne riječi
Modified Bessel functions of the first kind ; McKay I_nu Bessel distribution ; Confluent Horn Phi_2, Phi_3 functions ; Incomplete Lipschitz-Hankel integral ; Marcum Q function ; Functional bounding inequality

Sažetak
The main aim of this article is to derive by probabilistic method new functional and uniform bounds for Horn confluent hypergeometric Phi_2 of two variables and the incomplete Lipschitz-Hankel integral, among others. The main mathematical tools are the representation theorems for the McKay I_nu Bessel probability distribution's CDF and certain known and less known properties of cumulative distribution functions.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
NadSve-Sveučilište u Rijeci-uniri-pr-prirod-19-16 - Stohastičke metode u matematičkoj analizi (Krizmanić, Danijel, NadSve - UNIRI-plus projekti 2018) ( CroRIS)

Ustanove:
Pomorski fakultet, Rijeka

Poveznice na cjeloviti tekst rada:

web.math.pmf.unizg.hr

Citiraj ovu publikaciju:

Jankov Maširević, Dragana; Poganj, Tibor
Bounds for confluent Horn function Phi_2 deduced by McKay I_nu Bessel law // Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti (2022) (znanstveni, prihvaćen)
Jankov Maširević, D. & Poganj, T. (2022) Bounds for confluent Horn function Phi_2 deduced by McKay I_nu Bessel law. Prihvaćen za objavljivanje u Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti. [Preprint].
@unknown{unknown, author = {Jankov Ma\v{s}irevi\'{c}, Dragana and Poganj, Tibor}, year = {2022}, keywords = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Confluent Horn Phi\_2, Phi\_3 functions, Incomplete Lipschitz-Hankel integral, Marcum Q function, Functional bounding inequality}, journal = {Rad Hrvatske akademije znanosti i umjetnosti. Matemati\v{c}ke znanosti}, title = {Bounds for confluent Horn function Phi\_2 deduced by McKay I\_nu Bessel law}, keyword = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Confluent Horn Phi\_2, Phi\_3 functions, Incomplete Lipschitz-Hankel integral, Marcum Q function, Functional bounding inequality} }
@unknown{unknown, author = {Jankov Ma\v{s}irevi\'{c}, Dragana and Poganj, Tibor}, year = {2022}, keywords = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Confluent Horn Phi\_2, Phi\_3 functions, Incomplete Lipschitz-Hankel integral, Marcum Q function, Functional bounding inequality}, journal = {Rad Hrvatske akademije znanosti i umjetnosti. Matemati\v{c}ke znanosti}, title = {Bounds for confluent Horn function Phi\_2 deduced by McKay I\_nu Bessel law}, keyword = {Modified Bessel functions of the first kind, McKay I\_nu Bessel distribution, Confluent Horn Phi\_2, Phi\_3 functions, Incomplete Lipschitz-Hankel integral, Marcum Q function, Functional bounding inequality} }

Časopis indeksira:


  • Scopus





Contrast
Increase Font
Decrease Font
Dyslexic Font