Pregled bibliografske jedinice broj: 1220879
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX // OpenFOAM Workshop 17 Book of Abstracts
Cambridge, Ujedinjeno Kraljevstvo, 2022. str. 290-290 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1220879 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX
Autori
Čorak, Matej ; Uroić, Tessa ; Jasak, Hrvoje
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
OpenFOAM Workshop 17 Book of Abstracts
/ - , 2022, 290-290
Skup
The 17th OpenFOAM Workshop
Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 11.07.2022. - 14.07.2022
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
eigenspectrum, iterative linear algorithms, finite volume discretisation
Sažetak
The discretisation of partial differential equations using the Finite Volume Method results in linear systems with square, sparse coefficient matrices, which have symmetric addressing. The dimension of the coefficient matrix is equal to the number of finite volumes in the spatial discretisation, i.e. computational mesh. The sparseness pattern of the coefficient matrix is determined by the position of the elements inside the matrix and can affect the performance of iterative linear solvers [1]. The convergence of these iterative methods depends greatly on the eignespectrum of the iteration matrix, which is often correlated with the eigenvalues of the coefficient matrix. In this paper, we shall investigate the eigenspectrum, i.e. eigenvalues and eigenvectors of coefficient matrices obtained from the Finite Volume discretization of partial differential transport equations. We shall compare the effects of mesh properties: number of cells, mesh connectivity (structured, unstructured), cell type and size, cell anisotropy and cell volume ratio. The tests will be conducted for cases with single-phase, incompressible, laminar and turbulent flows. The eigenvalues shall be calculated for velocity and pressure coefficient matrices and compared for cases with dominant convection and diffusion transport. We shall implement and employ the power method [2] for calculating the dominant eigenvalues, as well as an external library, coupled to OpenFOAM.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb