Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1220879

THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX


Čorak, Matej; Uroić, Tessa; Jasak, Hrvoje
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX // OpenFOAM Workshop 17 Book of Abstracts
Cambridge, Ujedinjeno Kraljevstvo, 2022. str. 290-290 (predavanje, nije recenziran, sažetak, znanstveni)


CROSBI ID: 1220879 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX

Autori
Čorak, Matej ; Uroić, Tessa ; Jasak, Hrvoje

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
OpenFOAM Workshop 17 Book of Abstracts / - , 2022, 290-290

Skup
The 17th OpenFOAM Workshop

Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 11.07.2022. - 14.07.2022

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Nije recenziran

Ključne riječi
eigenspectrum, iterative linear algorithms, finite volume discretisation

Sažetak
The discretisation of partial differential equations using the Finite Volume Method results in linear systems with square, sparse coefficient matrices, which have symmetric addressing. The dimension of the coefficient matrix is equal to the number of finite volumes in the spatial discretisation, i.e. computational mesh. The sparseness pattern of the coefficient matrix is determined by the position of the elements inside the matrix and can affect the performance of iterative linear solvers [1]. The convergence of these iterative methods depends greatly on the eignespectrum of the iteration matrix, which is often correlated with the eigenvalues of the coefficient matrix. In this paper, we shall investigate the eigenspectrum, i.e. eigenvalues and eigenvectors of coefficient matrices obtained from the Finite Volume discretization of partial differential transport equations. We shall compare the effects of mesh properties: number of cells, mesh connectivity (structured, unstructured), cell type and size, cell anisotropy and cell volume ratio. The tests will be conducted for cases with single-phase, incompressible, laminar and turbulent flows. The eigenvalues shall be calculated for velocity and pressure coefficient matrices and compared for cases with dominant convection and diffusion transport. We shall implement and employ the power method [2] for calculating the dominant eigenvalues, as well as an external library, coupled to OpenFOAM.

Izvorni jezik
Engleski

Znanstvena područja
Strojarstvo



POVEZANOST RADA


Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb

Profili:

Avatar Url Hrvoje Jasak (autor)

Avatar Url Tessa Uroić (autor)

Avatar Url Matej Čorak (autor)


Citiraj ovu publikaciju:

Čorak, Matej; Uroić, Tessa; Jasak, Hrvoje
THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX // OpenFOAM Workshop 17 Book of Abstracts
Cambridge, Ujedinjeno Kraljevstvo, 2022. str. 290-290 (predavanje, nije recenziran, sažetak, znanstveni)
Čorak, M., Uroić, T. & Jasak, H. (2022) THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX. U: OpenFOAM Workshop 17 Book of Abstracts.
@article{article, author = {\v{C}orak, Matej and Uroi\'{c}, Tessa and Jasak, Hrvoje}, year = {2022}, pages = {290-290}, keywords = {eigenspectrum, iterative linear algorithms, finite volume discretisation}, title = {THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX}, keyword = {eigenspectrum, iterative linear algorithms, finite volume discretisation}, publisherplace = {Cambridge, Ujedinjeno Kraljevstvo} }
@article{article, author = {\v{C}orak, Matej and Uroi\'{c}, Tessa and Jasak, Hrvoje}, year = {2022}, pages = {290-290}, keywords = {eigenspectrum, iterative linear algorithms, finite volume discretisation}, title = {THE EIGENSPECTRUM OF A FINITE VOLUME MATRIX}, keyword = {eigenspectrum, iterative linear algorithms, finite volume discretisation}, publisherplace = {Cambridge, Ujedinjeno Kraljevstvo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font