Pregled bibliografske jedinice broj: 1220718
Praćenje više gibajućih objekata pomoću mješavina Gaussovih razdioba
Praćenje više gibajućih objekata pomoću mješavina Gaussovih razdioba, 2022., diplomski rad, diplomski, Zagreb
CROSBI ID: 1220718 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Praćenje više gibajućih objekata pomoću mješavina Gaussovih razdioba
(Multi-object Tracking via Gaussian Distribution Mixtures)
Autori
Arambašić, Nikola
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, diplomski rad, diplomski
Mjesto
Zagreb
Datum
11.03
Godina
2022
Stranica
42
Mentor
Marković, Ivan
Neposredni voditelj
Bićanić, Borna
Ključne riječi
Praćenje više gibajućih objekata ; Bayesova estimacija stanja ; slučajni konačni skupovi ; PHD filter ; smanjenje Gaussovih komponenti
(Multi-object tracking ; Bayesian state estimation ; Random Finite Sets ; PHD filter ; Gaussian component reduction ;)
Sažetak
Multi-object tracking is a complex problem where the goal is to estimate the number of objects in the surveillance region together with the kinematic states of each object. In addition to the measurement and process model uncertainty from classical estimation, there are many additional sources of uncertainty in multi-object tracking. For example, the number of objects may change with time and some objects might be undetected in some frames. Usually, there is also no way to determine which detections correspond to which object, hence a data association method is required in such problems. By using random finite sets theory, it is possible to extend the Bayesian recursion to the multi-object case. However, there exists no general closed-form solutions. Nonetheless, there are many approximations to the multi-object Bayesian recursion based on Gaussian mixtures. The goal of this thesis is to implement a Gaussian mixture multi-object tracking algorithm in MATLAB and test it in simulations.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti